Menu Close

Question-208437




Question Number 208437 by efronzo1 last updated on 16/Jun/24
Answered by som(math1967) last updated on 16/Jun/24
 a=sin84+cos66  ⇒a=sin84+sin24  ⇒a=2sin54cos30   ∴a=2×(((√5)+1)/4)×((√3)/2)=(((√3)((√5)+1))/4)  b=sin48−sin12  ⇒b=2sin18.cos30=(((√3)((√5)−1))/4)  ab=((3(5−1))/(4×4))=(3/4)   (a/b)=(((√5)+1)/( (√5)−1))  ⇒((a+b)/(a−b))=((2(√5))/2)=(√5)   (((a+b)/(a−b)))^(8ab) =5^((1/2)×8×(3/4)) =5^3
$$\:{a}={sin}\mathrm{84}+{cos}\mathrm{66} \\ $$$$\Rightarrow{a}={sin}\mathrm{84}+{sin}\mathrm{24} \\ $$$$\Rightarrow{a}=\mathrm{2}{sin}\mathrm{54}{cos}\mathrm{30} \\ $$$$\:\therefore{a}=\mathrm{2}×\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{4}} \\ $$$${b}={sin}\mathrm{48}−{sin}\mathrm{12} \\ $$$$\Rightarrow{b}=\mathrm{2}{sin}\mathrm{18}.{cos}\mathrm{30}=\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{4}} \\ $$$${ab}=\frac{\mathrm{3}\left(\mathrm{5}−\mathrm{1}\right)}{\mathrm{4}×\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\frac{{a}}{{b}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{1}} \\ $$$$\Rightarrow\frac{{a}+{b}}{{a}−{b}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{2}}=\sqrt{\mathrm{5}} \\ $$$$\:\left(\frac{{a}+{b}}{{a}−{b}}\right)^{\mathrm{8}{ab}} =\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{8}×\frac{\mathrm{3}}{\mathrm{4}}} =\mathrm{5}^{\mathrm{3}} \\ $$
Commented by efronzo1 last updated on 16/Jun/24
 = 5^3
$$\:=\:\mathrm{5}^{\mathrm{3}} \\ $$
Commented by som(math1967) last updated on 16/Jun/24
yes
$${yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *