Menu Close

u-n-1-u-n-u-n-3-u-0-0-1-v-n-1-u-n-1-2-1-u-n-2-f-u-n-2-f-x-2-x-1-x-2-v-n-converges-to-2-v-n-is-decreasing-show-that-v-n-2-x-n-1-n-1-m-0-m-v




Question Number 208445 by alcohol last updated on 16/Jun/24
u_(n+1)  = u_n −u_n ^3 , u_0 ∈]0,1[  v_n  = (1/u_(n+1) ^2 )−(1/u_n ^2 ) = f(u_n ^2 ) ; f(x) = ((2−x)/((1−x)^2 ))  v_n  converges to 2, v_n  is decreasing  . show that v_n  ≥ 2  x_n =(1/(n+1))Σ_(m=0) ^m (v_m )  . show that x_0 ≥x_n ≥v_n   . show that x_n  is decreasing and lim_(n→∞) x_n = l ≥2  . show that 2x_(n+1) −x_n ≤v_(n+1)  and deduce l  . express x_(n+1) −x_n  interms of u_n   . deduce lim_(n→∞) nu_n ^2
un+1=unun3,u0]0,1[vn=1un+121un2=f(un2);f(x)=2x(1x)2vnconvergesto2,vnisdecreasing.showthatvn2xn=1n+1mm=0(vm).showthatx0xnvn.showthatxnisdecreasingandlimnxn=l2.showthat2xn+1xnvn+1anddeducel.expressxn+1xnintermsofun.deducelimnnun2
Answered by Berbere last updated on 16/Jun/24
u_(n+1) =u_n −u_n ^3 =g(u_n )  g(x)=x−x^3 ⇒g′=1−3x^2   g(0)=g(1)⇒g(x)∈[0,g((1/( (√3))))] =[0(2/(3(√3)))]⊂[0,1]  u_n =g^n (u_0 )⊂[0,1] ⇒∀n∈N U_n ∈[0,1]  u_(n+1) −u_n =−u_n ^3 <0⇒u_n  decrease Bounded Cv  lim_(n→∞) u_n =l   ; solution of g(x)=x⇒l=0  v_n =(1/u_(n+1) ^2 )−(1/u_n ^2 )=(1/(u_n ^2 (1−u_n ^2 )^2 ))−(1/u_n ^2 )  u_n ^2 =w_n ⇒v_n =(1/w_n )[((1−(1−w_n )^2 )/((1−w_n )^2 ))]=((2w_n −w_n ^2 )/(w_n (1−w_n )^2 ))=((2−w_n )/((1−w_n )^2 ))  =f(w_n )=f(u_n ^2 )  lim_(n→∞) V_n =lim_(n→∞) f(u_n ^2 )=f(lim_(n→∞) u_n ^2 )=f(0)=2  by continuity f in 2  f(x)=((2−x)/((1−x)^2 ))=((−(1−x)^2 +2(1−x)(2−x))/((1−x)^4 ))=  (((1−x)(−(1−x)+2(2−x))/((1−x)^4 ))=(((1−x)(3−x))/((1−x)^4 ))>0  f(u_n ^2 )∈]2,∞[⇒v_n >2  u_(n+1) <u_n ⇒f(u_(n+1) ^2 )<f(u_n ^2 )⇒v_(n+1) <v_n  ;v_n  decrease  x_n =(1/(n+1))Σ_(k=0) ^n v_m ;∀k∈[0,n+1]    v_n ≤v_k ≤v_0 ⇒^(v_n  decrease) v_n ≤x_n ≤v_0   x_(n+1) −x_n =(1/(n+2))Σ_(k=0) ^(n+1) v_k −(1/(n+1))Σ_(k=0) ^n v_k =(((n+1)Σv_k −(n+2)Σv_k )/((n+2)(n+1)))  =(((n+1)v_(n+1) −Σ_(k=0) ^n v_k )/((n+1)(n+2)))=((Σ(v_(n+1) −v_k ))/((n+1)(n+2)))<0  ∀k∈[0,n] v_k >v_(n+1)  v_n  decrease   x_n  decrease  bounded Cv  l ;x_n ≥v_n ⇒l≥2  2x_(n+1) −x_n =(2/(n+2))Σ_(k=0) ^(n+1) v_k −(1/(n+1))Σ_(k=0) ^n v_k     =((2(n+1)Σ^(n+1) v_k −(n+2)Σ_(k=0) ^n v_k )/((n+2)(n+1)))=((2v_(n+1) +2nv_(n+1) +nΣ_(k=0) ^n v_k )/)  ≥(((2+2n)v_(n+1) +n(n+1)v_(n+1) )/((n+1)(n+2)))≥v_(n+1)   not 2x_(n+1) −x_n <v_(n+1)   l=2 by cesaro  x_n =(1/(n+1))(Σ_(k=0) ^n (1/u_(k+1) ^2 )−(1/u_k ^2 ))=(1/(n+1))((1/u_(n+1) ^2 )−(1/u_0 ^2 ))  ⇒lim_(n→∞) x_n =2=lim_(n→∞) (1/((n+1)u_(n+1) ^2 ))  ⇒lim_(n→∞) (n+1)u_(n+1) ^2 =(1/2)  w_n =(n+1)u_(n+1) ^2  cv⇒lim_(n→∞) W_(n−1) =lim_(n→∞) W_n =(1/2)  nU_n ^2 →(1/2)
un+1=unun3=g(un)g(x)=xx3g=13x2g(0)=g(1)g(x)[0,g(13)]=[0233][0,1]un=gn(u0)[0,1]nNUn[0,1]un+1un=un3<0undecreaseBoundedCvlimnun=l;solutionofg(x)=xl=0vn=1un+121un2=1un2(1un2)21un2un2=wnvn=1wn[1(1wn)2(1wn)2]=2wnwn2wn(1wn)2=2wn(1wn)2=f(wn)=f(un2)limnVn=limnf(un2)=f(limnun2)=f(0)=2bycontinuityfin2f(x)=2x(1x)2=(1x)2+2(1x)(2x)(1x)4=(1x)((1x)+2(2x)(1x)4=(1x)(3x)(1x)4>0f(un2)]2,[vn>2un+1<unf(un+12)<f(un2)vn+1<vn;vndecreasexn=1n+1nk=0vm;k[0,n+1]vnvkv0vndecreasevnxnv0xn+1xn=1n+2n+1k=0vk1n+1nk=0vk=(n+1)Σvk(n+2)Σvk(n+2)(n+1)=(n+1)vn+1nk=0vk(n+1)(n+2)=Σ(vn+1vk)(n+1)(n+2)<0k[0,n]vk>vn+1vndecreasexndecreaseboundedCvl;xnvnl22xn+1xn=2n+2n+1k=0vk1n+1nk=0vk=2(n+1)n+1vk(n+2)nk=0vk(n+2)(n+1)=2vn+1+2nvn+1+nnk=0vk(2+2n)vn+1+n(n+1)vn+1(n+1)(n+2)vn+1not2xn+1xn<vn+1l=2bycesaroxn=1n+1(nk=01uk+121uk2)=1n+1(1un+121u02)limnxn=2=limn1(n+1)un+12limn(n+1)un+12=12wn=(n+1)un+12cvlimnWn1=limnWn=12nUn212

Leave a Reply

Your email address will not be published. Required fields are marked *