u-n-1-u-n-u-n-3-u-0-0-1-v-n-1-u-n-1-2-1-u-n-2-f-u-n-2-f-x-2-x-1-x-2-v-n-converges-to-2-v-n-is-decreasing-show-that-v-n-2-x-n-1-n-1-m-0-m-v Tinku Tara June 16, 2024 Arithmetic 0 Comments FacebookTweetPin Question Number 208445 by alcohol last updated on 16/Jun/24 un+1=un−un3,u0∈]0,1[vn=1un+12−1un2=f(un2);f(x)=2−x(1−x)2vnconvergesto2,vnisdecreasing.showthatvn⩾2xn=1n+1∑mm=0(vm).showthatx0⩾xn⩾vn.showthatxnisdecreasingandlimn→∞xn=l⩾2.showthat2xn+1−xn⩽vn+1anddeducel.expressxn+1−xnintermsofun.deducelimn→∞nun2 Answered by Berbere last updated on 16/Jun/24 un+1=un−un3=g(un)g(x)=x−x3⇒g′=1−3x2g(0)=g(1)⇒g(x)∈[0,g(13)]=[0233]⊂[0,1]un=gn(u0)⊂[0,1]⇒∀n∈NUn∈[0,1]un+1−un=−un3<0⇒undecreaseBoundedCvlimn→∞un=l;solutionofg(x)=x⇒l=0vn=1un+12−1un2=1un2(1−un2)2−1un2un2=wn⇒vn=1wn[1−(1−wn)2(1−wn)2]=2wn−wn2wn(1−wn)2=2−wn(1−wn)2=f(wn)=f(un2)limn→∞Vn=limn→∞f(un2)=f(limn→∞un2)=f(0)=2bycontinuityfin2f(x)=2−x(1−x)2=−(1−x)2+2(1−x)(2−x)(1−x)4=(1−x)(−(1−x)+2(2−x)(1−x)4=(1−x)(3−x)(1−x)4>0f(un2)∈]2,∞[⇒vn>2un+1<un⇒f(un+12)<f(un2)⇒vn+1<vn;vndecreasexn=1n+1∑nk=0vm;∀k∈[0,n+1]vn⩽vk⩽v0⇒vndecreasevn⩽xn⩽v0xn+1−xn=1n+2∑n+1k=0vk−1n+1∑nk=0vk=(n+1)Σvk−(n+2)Σvk(n+2)(n+1)=(n+1)vn+1−∑nk=0vk(n+1)(n+2)=Σ(vn+1−vk)(n+1)(n+2)<0∀k∈[0,n]vk>vn+1vndecreasexndecreaseboundedCvl;xn⩾vn⇒l⩾22xn+1−xn=2n+2∑n+1k=0vk−1n+1∑nk=0vk=2(n+1)∑n+1vk−(n+2)∑nk=0vk(n+2)(n+1)=2vn+1+2nvn+1+n∑nk=0vk⩾(2+2n)vn+1+n(n+1)vn+1(n+1)(n+2)⩾vn+1not2xn+1−xn<vn+1l=2bycesaroxn=1n+1(∑nk=01uk+12−1uk2)=1n+1(1un+12−1u02)⇒limn→∞xn=2=limn→∞1(n+1)un+12⇒limn→∞(n+1)un+12=12wn=(n+1)un+12cv⇒limn→∞Wn−1=limn→∞Wn=12nUn2→12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-1-gt-a-2-gt-a-3-gt-gt-a-n-gt-0-b-1-gt-b-2-gt-b-3-gt-gt-b-n-gt-0-prove-i-1-n-a-i-b-i-i-1-n-a-i-b-n-i-1-Next Next post: 0-ln-2-x-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.