Question Number 208639 by Tawa11 last updated on 20/Jun/24
Commented by mr W last updated on 20/Jun/24
$${is}\:{it}\:{a}\:{red}\:{square}? \\ $$$${does}\:{one}\:{corner}\:{of}\:{the}\:{square}\:{lie} \\ $$$${on}\:{the}\:{center}\:{of}\:{semicircle}? \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Yes}\:\mathrm{sir}. \\ $$
Commented by som(math1967) last updated on 20/Jun/24
$${i}\:{got}\:\mathrm{4}×\sqrt{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$
Answered by AlagaIbile last updated on 20/Jun/24
$$\:\boldsymbol{{x}}\:=\:\sqrt{\frac{\mathrm{80}}{\mathrm{3}}}\:\boldsymbol{{cm}}\:=\:\mathrm{4}\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\:\boldsymbol{{cm}} \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 20/Jun/24
$${side}\:{length}\:{of}\:{square}\:{a}=\sqrt{\mathrm{5}} \\ $$$${radius}\:{of}\:{semicircle}\:{r} \\ $$$${a}^{\mathrm{2}} =\left({r}−{a}\right)\left({r}+{a}\right) \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\frac{{x}}{\mathrm{2}{r}}=\frac{{r}}{\:\sqrt{{r}^{\mathrm{2}} +{a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}{r}^{\mathrm{2}} }{\:\sqrt{{r}^{\mathrm{2}} +{a}^{\mathrm{2}} }}=\frac{\mathrm{4}{a}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\sqrt{\mathrm{15}}}{\mathrm{3}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 20/Jun/24
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Wow},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$
Answered by A5T last updated on 20/Jun/24
Commented by A5T last updated on 20/Jun/24
$${s}×{s}=\mathrm{5}\Rightarrow{s}=\sqrt{\mathrm{5}};\:{s}^{\mathrm{2}} +{s}^{\mathrm{2}} ={r}^{\mathrm{2}} \Rightarrow{r}=\sqrt{\mathrm{10}} \\ $$$$\frac{{x}−{k}}{\mathrm{2}{r}}=\frac{{r}}{{x}}\Rightarrow\mathrm{2}{r}^{\mathrm{2}} ={x}^{\mathrm{2}} −{kx}\Rightarrow\mathrm{20}={x}\left({x}−{k}\right)…\left({i}\right) \\ $$$$\left({x}−{k}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{15}\Rightarrow{x}−{k}=\sqrt{\mathrm{15}}…\left({ii}\right) \\ $$$$\left({i}\right)\&\left({ii}\right)\Rightarrow{x}=\frac{\mathrm{20}}{\:\sqrt{\mathrm{15}}}=\frac{\mathrm{4}\sqrt{\mathrm{15}}}{\mathrm{3}} \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Sir},\:\mathrm{am}\:\mathrm{confused}\:\mathrm{on}. \\ $$$$\:\:\frac{\mathrm{x}\:\:−\:\:\mathrm{k}}{\mathrm{2r}}\:\:\:=\:\:\:\frac{\mathrm{r}}{\mathrm{x}} \\ $$$$\mathrm{Please}\:\mathrm{explain}\:\mathrm{the}\:\mathrm{rule}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{us}\:\mathrm{that}\:\mathrm{sir}. \\ $$
Commented by A5T last updated on 20/Jun/24
Commented by A5T last updated on 20/Jun/24
$$\bigtriangleup{DFC}\:{is}\:{similar}\:{to}\:{ABC} \\ $$$$\Rightarrow\frac{{DC}={x}−{k}}{{AC}=\mathrm{2}{r}}=\frac{{FC}={r}}{{BC}={x}}\Rightarrow\mathrm{2}{r}^{\mathrm{2}} ={x}\left({x}−{k}\right) \\ $$
Commented by Tawa11 last updated on 20/Jun/24
$$\mathrm{Wow},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir} \\ $$