Menu Close

Question-208639




Question Number 208639 by Tawa11 last updated on 20/Jun/24
Commented by mr W last updated on 20/Jun/24
is it a red square?  does one corner of the square lie  on the center of semicircle?
$${is}\:{it}\:{a}\:{red}\:{square}? \\ $$$${does}\:{one}\:{corner}\:{of}\:{the}\:{square}\:{lie} \\ $$$${on}\:{the}\:{center}\:{of}\:{semicircle}? \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Yes sir.
$$\mathrm{Yes}\:\mathrm{sir}. \\ $$
Commented by som(math1967) last updated on 20/Jun/24
i got 4×(√(5/3))
$${i}\:{got}\:\mathrm{4}×\sqrt{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$
Answered by AlagaIbile last updated on 20/Jun/24
 x = (√((80)/3)) cm = 4(√(5/3)) cm
$$\:\boldsymbol{{x}}\:=\:\sqrt{\frac{\mathrm{80}}{\mathrm{3}}}\:\boldsymbol{{cm}}\:=\:\mathrm{4}\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\:\boldsymbol{{cm}} \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Thanks sir
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 20/Jun/24
side length of square a=(√5)  radius of semicircle r  a^2 =(r−a)(r+a)  ⇒r^2 =2a^2   (x/(2r))=(r/( (√(r^2 +a^2 ))))  ⇒x=((2r^2 )/( (√(r^2 +a^2 ))))=((4a)/( (√3)))=((4(√5))/( (√3)))=((4(√(15)))/3) ✓
$${side}\:{length}\:{of}\:{square}\:{a}=\sqrt{\mathrm{5}} \\ $$$${radius}\:{of}\:{semicircle}\:{r} \\ $$$${a}^{\mathrm{2}} =\left({r}−{a}\right)\left({r}+{a}\right) \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\frac{{x}}{\mathrm{2}{r}}=\frac{{r}}{\:\sqrt{{r}^{\mathrm{2}} +{a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}{r}^{\mathrm{2}} }{\:\sqrt{{r}^{\mathrm{2}} +{a}^{\mathrm{2}} }}=\frac{\mathrm{4}{a}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\sqrt{\mathrm{15}}}{\mathrm{3}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Thanks sir
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 20/Jun/24
Commented by Tawa11 last updated on 20/Jun/24
Wow, I understand now sir.
$$\mathrm{Wow},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$
Answered by A5T last updated on 20/Jun/24
Commented by A5T last updated on 20/Jun/24
s×s=5⇒s=(√5); s^2 +s^2 =r^2 ⇒r=(√(10))  ((x−k)/(2r))=(r/x)⇒2r^2 =x^2 −kx⇒20=x(x−k)...(i)  (x−k)^2 =s^2 +r^2 =15⇒x−k=(√(15))...(ii)  (i)&(ii)⇒x=((20)/( (√(15))))=((4(√(15)))/3)
$${s}×{s}=\mathrm{5}\Rightarrow{s}=\sqrt{\mathrm{5}};\:{s}^{\mathrm{2}} +{s}^{\mathrm{2}} ={r}^{\mathrm{2}} \Rightarrow{r}=\sqrt{\mathrm{10}} \\ $$$$\frac{{x}−{k}}{\mathrm{2}{r}}=\frac{{r}}{{x}}\Rightarrow\mathrm{2}{r}^{\mathrm{2}} ={x}^{\mathrm{2}} −{kx}\Rightarrow\mathrm{20}={x}\left({x}−{k}\right)…\left({i}\right) \\ $$$$\left({x}−{k}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{15}\Rightarrow{x}−{k}=\sqrt{\mathrm{15}}…\left({ii}\right) \\ $$$$\left({i}\right)\&\left({ii}\right)\Rightarrow{x}=\frac{\mathrm{20}}{\:\sqrt{\mathrm{15}}}=\frac{\mathrm{4}\sqrt{\mathrm{15}}}{\mathrm{3}} \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Thanks sir.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Sir, am confused on.    ((x  −  k)/(2r))   =   (r/x)  Please explain the rule that gives us that sir.
$$\mathrm{Sir},\:\mathrm{am}\:\mathrm{confused}\:\mathrm{on}. \\ $$$$\:\:\frac{\mathrm{x}\:\:−\:\:\mathrm{k}}{\mathrm{2r}}\:\:\:=\:\:\:\frac{\mathrm{r}}{\mathrm{x}} \\ $$$$\mathrm{Please}\:\mathrm{explain}\:\mathrm{the}\:\mathrm{rule}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{us}\:\mathrm{that}\:\mathrm{sir}. \\ $$
Commented by A5T last updated on 20/Jun/24
Commented by A5T last updated on 20/Jun/24
△DFC is similar to ABC  ⇒((DC=x−k)/(AC=2r))=((FC=r)/(BC=x))⇒2r^2 =x(x−k)
$$\bigtriangleup{DFC}\:{is}\:{similar}\:{to}\:{ABC} \\ $$$$\Rightarrow\frac{{DC}={x}−{k}}{{AC}=\mathrm{2}{r}}=\frac{{FC}={r}}{{BC}={x}}\Rightarrow\mathrm{2}{r}^{\mathrm{2}} ={x}\left({x}−{k}\right) \\ $$
Commented by Tawa11 last updated on 20/Jun/24
Wow, I understand now sir
$$\mathrm{Wow},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *