Menu Close

Question-208676




Question Number 208676 by RoseAli last updated on 20/Jun/24
Answered by Berbere last updated on 20/Jun/24
(a)^(1/4) +(b)^(1/4) =(√(4+3(√2)))=(2)^(1/4) .(√(2(√2)+3))  ⇔((2a))^(1/4) +((2b))^(1/4) =(√(((√2)+1)^2 ))=(√2)+1  ⇔((a/2))^(1/4) +((b/2))^(1/4) =(√2)+1  b=0 ⇒((a/2))^(1/4) =(√2)+1 no solution N  b=1  no solution  b=2⇒a=8  b=3 no solution  b=4no solution  b=8;a=2  (a,b)∈{(2,8);(8,2)}
$$\sqrt[{\mathrm{4}}]{{a}}+\sqrt[{\mathrm{4}}]{{b}}=\sqrt{\mathrm{4}+\mathrm{3}\sqrt{\mathrm{2}}}=\sqrt[{\mathrm{4}}]{\mathrm{2}}.\sqrt{\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{3}} \\ $$$$\Leftrightarrow\sqrt[{\mathrm{4}}]{\mathrm{2}{a}}+\sqrt[{\mathrm{4}}]{\mathrm{2}{b}}=\sqrt{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$$$\Leftrightarrow\sqrt[{\mathrm{4}}]{\frac{{a}}{\mathrm{2}}}+\sqrt[{\mathrm{4}}]{\frac{{b}}{\mathrm{2}}}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$$${b}=\mathrm{0}\:\Rightarrow\sqrt[{\mathrm{4}}]{\frac{{a}}{\mathrm{2}}}=\sqrt{\mathrm{2}}+\mathrm{1}\:{no}\:{solution}\:\mathbb{N} \\ $$$${b}=\mathrm{1}\:\:{no}\:{solution} \\ $$$${b}=\mathrm{2}\Rightarrow{a}=\mathrm{8} \\ $$$${b}=\mathrm{3}\:{no}\:{solution} \\ $$$${b}=\mathrm{4}{no}\:{solution} \\ $$$${b}=\mathrm{8};{a}=\mathrm{2} \\ $$$$\left({a},{b}\right)\in\left\{\left(\mathrm{2},\mathrm{8}\right);\left(\mathrm{8},\mathrm{2}\right)\right\} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *