Menu Close

0-pi-2-xln-sin-x-dx-




Question Number 208692 by Ghisom last updated on 21/Jun/24
∫_0 ^(π/2) xln sin x dx=?
π/20xlnsinxdx=?
Answered by Berbere last updated on 21/Jun/24
ln(sin(x))=−ln(2)−Σ_(k≥1) ((cos(2kx))/k)  proof ln(sin(x))=Re(ln(sin(x))  ln(sin(x)=ln(((e^(ix) −e^(−ix) )/(2i)))  ln(sin(x))=ln(e^(ix) (1−e^(−2ix) ))−ln(2)==ix−ln(2)−Σ(e^(−2kix) /k)  Reln(sin(x))=−ln(2)−Σ((cos(2kx))/k)  ∫_0 ^(π/2) xln(sin(x))dx=∫_0 ^(π/2) x(−ln(2)−Σ((cos(2kx))/k))  =[−(x^2 /2)ln(2)]_0 ^(π/2) −Σ_(k≥1) (1/k)∫_0 ^(π/2) xcos(2kx)dx^�   ∫xcos(2kx)dx=x.((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))  .−(π^2 /8)ln(2)−Σ_k (1/k)[((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))]_0 ^(π/2)   =−(π^2 /8)ln(2)−Σ(((−1)^k −1)/(4k^3 ))  =−(π^3 /8)ln(2)+Σ_(k≥0) (1/(2(2k+1)^3 ))=−(π^3 /8)ln(2)+(7/(16))ζ(3)
ln(sin(x))=ln(2)k1cos(2kx)kproofln(sin(x))=Re(ln(sin(x))ln(sin(x)=ln(eixeix2i)ln(sin(x))=ln(eix(1e2ix))ln(2)==ixln(2)Σe2kixkReln(sin(x))=ln(2)Σcos(2kx)k0π2xln(sin(x))dx=0π2x(ln(2)Σcos(2kx)k)=[x22ln(2)]0π2k11k0π2xcos(2kx)dx¯xcos(2kx)dx=x.sin(2kx)2k+cos(2kx)4k2.π28ln(2)k1k[sin(2kx)2k+cos(2kx)4k2]0π2=π28ln(2)Σ(1)k14k3=π38ln(2)+k012(2k+1)3=π38ln(2)+716ζ(3)
Commented by Ghisom last updated on 22/Jun/24
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *