Menu Close

Calculate-the-area-enclosed-by-the-curve-1-x-2-2-1-y-2-2-1-




Question Number 208693 by Frix last updated on 21/Jun/24
Calculate the area enclosed by the curve  ((1/x)−2)^2 +((1/y)−2)^2 =1
Calculatetheareaenclosedbythecurve(1x2)2+(1y2)2=1
Answered by mr W last updated on 21/Jun/24
(1/x)−2=u ⇒x=(1/(2+u))  (1/y)−2=v ⇒y=(1/(2+v))  u^2 +v^2 =1  u=r cos θ  v=r sin θ  dA=dxdy=((dudv)/((2+u)^2 (2+v)^2 ))  dudv=rdrdθ  A=∫_0 ^(2π) ∫_0 ^1 ((rdrdθ)/((2+r cos θ)^2 (2+r sin θ)^2 ))      ≈0.296131
1x2=ux=12+u1y2=vy=12+vu2+v2=1u=rcosθv=rsinθdA=dxdy=dudv(2+u)2(2+v)2dudv=rdrdθA=02π01rdrdθ(2+rcosθ)2(2+rsinθ)20.296131
Commented by mr W last updated on 21/Jun/24
Commented by mr W last updated on 21/Jun/24
Commented by Frix last updated on 21/Jun/24
Yes.  I got the exact result following a different  path:, but it′s not easy...  A=((8(√3))/(147))π
Yes.Igottheexactresultfollowingadifferentpath:,butitsnoteasyA=83147π
Answered by mr W last updated on 22/Jun/24
 { ((x=(1/(2+cos t)))),((y=(1/(2+sin t)))) :}  dA=((ydx−xdy)/2)=(((yx′−xy′)dt)/2)  dA=(1/2)×((2(sin t+cos t)+1)/((2+sin t)^2 (2+cos t)^2 ))×dt  A=(1/2)∣∫_0 ^(2π) ((2(sin t+cos t)+1)/((2+sin t)^2 (2+cos t)^2 ))dt∣      =((8π)/(49(√3)))≈0.296131
{x=12+costy=12+sintdA=ydxxdy2=(yxxy)dt2dA=12×2(sint+cost)+1(2+sint)2(2+cost)2×dtA=1202π2(sint+cost)+1(2+sint)2(2+cost)2dt=8π4930.296131

Leave a Reply

Your email address will not be published. Required fields are marked *