Menu Close

Find-arccos-arctg-5-12-arcsin-4-5-




Question Number 208704 by hardmath last updated on 21/Jun/24
Find:  arccos (arctg (5/(12))  +  arcsin (4/5)) = ?
$$\mathrm{Find}: \\ $$$$\mathrm{arccos}\:\left(\mathrm{arctg}\:\frac{\mathrm{5}}{\mathrm{12}}\:\:+\:\:\mathrm{arcsin}\:\frac{\mathrm{4}}{\mathrm{5}}\right)\:=\:? \\ $$
Commented by mr W last updated on 21/Jun/24
non−sense.  arccos (x) is only defined for   −1≤x≤1.  do you mean  cos (arctg (5/(12))  +  arcsin (4/5)) = ?
$${non}−{sense}. \\ $$$${arccos}\:\left({x}\right)\:{is}\:{only}\:{defined}\:{for}\: \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}. \\ $$$${do}\:{you}\:{mean} \\ $$$$\mathrm{cos}\:\left(\mathrm{arctg}\:\frac{\mathrm{5}}{\mathrm{12}}\:\:+\:\:\mathrm{arcsin}\:\frac{\mathrm{4}}{\mathrm{5}}\right)\:=\:? \\ $$
Commented by hardmath last updated on 28/Jun/24
sorry dear professor, yes   cos...
$$\mathrm{sorry}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{yes}\:\:\:\mathrm{cos}… \\ $$
Answered by mr W last updated on 28/Jun/24
α=tan^(−1) (5/(12)) ⇒sin α=(5/(13)), cos α=((12)/(13))  β=sin^(−1) (4/5) ⇒sin β=(4/5), cos β=(3/5)  cos (α+β)=cos α cos β−sin α sin β  =((12)/(13))×(3/5)−(5/(13))×(4/5)=((16)/(65)) ✓
$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{5}}{\mathrm{13}},\:\mathrm{cos}\:\alpha=\frac{\mathrm{12}}{\mathrm{13}} \\ $$$$\beta=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}\:\Rightarrow\mathrm{sin}\:\beta=\frac{\mathrm{4}}{\mathrm{5}},\:\mathrm{cos}\:\beta=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)=\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta \\ $$$$=\frac{\mathrm{12}}{\mathrm{13}}×\frac{\mathrm{3}}{\mathrm{5}}−\frac{\mathrm{5}}{\mathrm{13}}×\frac{\mathrm{4}}{\mathrm{5}}=\frac{\mathrm{16}}{\mathrm{65}}\:\checkmark \\ $$
Commented by hardmath last updated on 28/Jun/24
thankyou dear professor
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *