Menu Close

Question-208743




Question Number 208743 by Tawa11 last updated on 22/Jun/24
Commented by Tawa11 last updated on 22/Jun/24
Area of red circle.
$$\mathrm{Area}\:\mathrm{of}\:\mathrm{red}\:\mathrm{circle}. \\ $$
Commented by Tawa11 last updated on 22/Jun/24
I got  1.5
$$\mathrm{I}\:\mathrm{got}\:\:\mathrm{1}.\mathrm{5} \\ $$
Commented by mr W last updated on 22/Jun/24
Commented by mr W last updated on 22/Jun/24
(1/( (√r)))=(2/( (√6))) ⇒r=(3/2)
$$\frac{\mathrm{1}}{\:\sqrt{{r}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\:\Rightarrow{r}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 22/Jun/24
or  6^2 +(6−r)^2 =(6+r)^2   ⇒r=(3/2)
$${or} \\ $$$$\mathrm{6}^{\mathrm{2}} +\left(\mathrm{6}−{r}\right)^{\mathrm{2}} =\left(\mathrm{6}+{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 22/Jun/24
I used this.  Based on what I learnt here
$$\mathrm{I}\:\mathrm{used}\:\mathrm{this}. \\ $$$$\mathrm{Based}\:\mathrm{on}\:\mathrm{what}\:\mathrm{I}\:\mathrm{learnt}\:\mathrm{here} \\ $$
Commented by Tawa11 last updated on 22/Jun/24
Thanks sir
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by Tawa11 last updated on 22/Jun/24
Sir please question 208741
$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{question}\:\mathrm{208741} \\ $$
Commented by Tawa11 last updated on 22/Jun/24
Please prove this theorem sir.
$$\mathrm{Please}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{theorem}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 22/Jun/24
https://en.m.wikipedia.org/wiki/Descartes%27_theorem
Answered by Sutrisno last updated on 22/Jun/24
(6+r)^2 =6^2 +(6−r)^2   36+12r+r^2 =36+36−12r+r^2   24r=36→r=(3/2)  luas=π((3/2))^2 =(9/4)π
$$\left(\mathrm{6}+{r}\right)^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\left(\mathrm{6}−{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{36}+\mathrm{12}{r}+{r}^{\mathrm{2}} =\mathrm{36}+\mathrm{36}−\mathrm{12}{r}+{r}^{\mathrm{2}} \\ $$$$\mathrm{24}{r}=\mathrm{36}\rightarrow{r}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${luas}=\pi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}}\pi \\ $$
Commented by Tawa11 last updated on 22/Jun/24
Thanks sir.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *