Question Number 208772 by Jubr last updated on 22/Jun/24
Answered by mr W last updated on 22/Jun/24
Commented by mr W last updated on 22/Jun/24
$$\left({r}−{a}\right)^{\mathrm{2}} +\left({r}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{4}{r}^{\mathrm{2}} −\mathrm{12}{ar}+\mathrm{5}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${a}=\frac{\mathrm{2}{r}}{\mathrm{5}}=\frac{\mathrm{2}×\mathrm{5}}{\mathrm{5}}=\mathrm{2} \\ $$$${area}\:{of}\:{square}\:={a}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$
Commented by Tawa11 last updated on 22/Jun/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by Wuji last updated on 23/Jun/24
$$\boldsymbol{\mathrm{sir}},\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{app}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{duagrams}}? \\ $$
Commented by mr W last updated on 23/Jun/24
$${Photo}\:{Editor} \\ $$
Answered by cherokeesay last updated on 22/Jun/24
Commented by Tawa11 last updated on 22/Jun/24
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$