Menu Close

does-the-rule-of-odd-and-even-functions-can-be-applied-with-improper-integration-I-xe-x-2-dx-while-f-x-xe-x-2-is-odd-then-I-0-




Question Number 208842 by NasaSara last updated on 24/Jun/24
does the rule of odd and even functions   can be applied with improper integration?  I=∫_(−∞) ^∞ xe^(−x^2 ) dx   while  f(x)= xe^(−x^2 )  is odd  then I =0
$${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\ $$
Commented by Frix last updated on 24/Jun/24
Yes.
$$\mathrm{Yes}. \\ $$
Answered by mathzup last updated on 24/Jun/24
I=lim_(a→+∞) ∫_(−a) ^a xe^(−x^2 ) dx =0  puisque la fonction x→xe^(−x^2 ) est impaire
$${I}={lim}_{{a}\rightarrow+\infty} \int_{−{a}} ^{{a}} {xe}^{−{x}^{\mathrm{2}} } {dx}\:=\mathrm{0} \\ $$$${puisque}\:{la}\:{fonction}\:{x}\rightarrow{xe}^{−{x}^{\mathrm{2}} } {est}\:{impaire} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *