Question Number 208828 by efronzo1 last updated on 24/Jun/24
Answered by mr W last updated on 24/Jun/24
$${BM}={MC}={a},\:{say} \\ $$$${AM}={DM}=\mathrm{2}{a} \\ $$$$\frac{{BM}}{\mathrm{6}}=\frac{{MQ}}{\mathrm{4}}\:\Rightarrow{MQ}=\frac{\mathrm{2}{a}}{\mathrm{3}}\:\Rightarrow{QD}=\frac{\mathrm{4}{a}}{\mathrm{3}} \\ $$$$\left(\mathrm{6}+\mathrm{4}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right)^{\mathrm{2}} +{a}\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right) \\ $$$$\Rightarrow{a}=\frac{\mathrm{30}}{\:\sqrt{\mathrm{19}}} \\ $$$$\frac{\mathrm{sin}\:\angle{CBR}}{\frac{\mathrm{2}{a}}{\mathrm{3}}}=\frac{\mathrm{sin}\:\mathrm{120}°}{\mathrm{6}+\mathrm{4}} \\ $$$$\mathrm{sin}\:\angle{CBR}=\frac{\sqrt{\mathrm{3}}}{\mathrm{10}×\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{30}}{\:\sqrt{\mathrm{19}}}=\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{19}}} \\ $$$$\frac{{QR}}{\mathrm{sin}\:\mathrm{30}°}=\frac{{QD}}{\mathrm{sin}\:\left(\mathrm{90}°+\angle{CBR}\right)}=\frac{\mathrm{4}{a}}{\mathrm{3}\:\mathrm{cos}\:\angle{CBR}} \\ $$$${QR}=\frac{\mathrm{4}×\mathrm{30}}{\mathrm{2}×\mathrm{3}\sqrt{\mathrm{19}}×\frac{\mathrm{4}}{\:\sqrt{\mathrm{19}}}}=\mathrm{5}\:\checkmark \\ $$
Commented by Tawa11 last updated on 24/Jun/24
$$\mathrm{Weldone}\:\mathrm{sir}.\:\mathrm{Learning}. \\ $$
Answered by A5T last updated on 24/Jun/24
Commented by A5T last updated on 24/Jun/24
$$\frac{{BM}}{{MC}}×\frac{{CD}}{{DR}}×\frac{{RQ}}{{QB}}=\mathrm{1}\Rightarrow\mathrm{1}×\frac{{t}}{{DR}}×\frac{?}{\mathrm{10}}=\mathrm{1}…\left({i}\right) \\ $$$${tan}\mathrm{30}°=\frac{\frac{{s}}{\mathrm{2}}}{{t}}\Rightarrow{s}=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}}{\mathrm{3}};\frac{{sin}\theta}{{AP}}=\frac{{sin}\mathrm{30}°}{\mathrm{6}}\Rightarrow{AP}=\mathrm{12}{sin}\theta \\ $$$$\frac{{sin}\mathrm{60}°}{\mathrm{6}}=\frac{{sin}\left(\mathrm{90}−\theta\right)}{{MP}}\Rightarrow{MP}=\mathrm{4}\sqrt{\mathrm{3}}{cos}\theta \\ $$$${MP}+{AP}=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}}{\mathrm{3}}=\mathrm{12}{sin}\theta+\mathrm{4}\sqrt{\mathrm{3}}{cos}\theta…\left({ii}\right) \\ $$$$\frac{{sin}\left(\mathrm{90}−\theta\right)}{{CR}}=\frac{{sin}\theta}{{s}}\Rightarrow{CR}={scot}\theta=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}{cot}\theta}{\mathrm{3}} \\ $$$$\Rightarrow{DR}=\frac{\mathrm{3}{t}−\mathrm{2}{t}\sqrt{\mathrm{3}}{cot}\theta}{\mathrm{3}};\:{sin}\theta=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}}{\mathrm{30}+\mathrm{3}?} \\ $$$$\Rightarrow\mathrm{30}{sin}\theta+\mathrm{3}?{sin}\theta=\mathrm{2}{t}\sqrt{\mathrm{3}}\Rightarrow?=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}−\mathrm{30}{sin}\theta}{\mathrm{3}{sin}\theta} \\ $$$$\left({i}\right)\Rightarrow\frac{\mathrm{3}}{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{3}}{cot}\theta}×\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}−\mathrm{30}{sin}\theta}{\mathrm{30}{sin}\theta}=\mathrm{1} \\ $$$$\Rightarrow{t}\sqrt{\mathrm{3}}=\mathrm{30}{sin}\theta−\mathrm{10}\sqrt{\mathrm{3}}{cos}\theta…\left({iii}\right) \\ $$$$\left({ii}\right)\&\left({iii}\right)\Rightarrow{tan}\theta=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\Rightarrow{sin}\theta=\frac{\mathrm{4}}{\:\sqrt{\mathrm{19}}}\Rightarrow{cos}\theta=\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{19}}} \\ $$$$\Rightarrow{t}=\frac{\mathrm{30}\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{19}}}\Rightarrow?=\frac{\mathrm{2}{t}\sqrt{\mathrm{3}}−\mathrm{30}{sin}\theta}{\mathrm{3}{sin}\theta}=\mathrm{5} \\ $$
Answered by A5T last updated on 24/Jun/24
$$\mathrm{1}×\frac{{CD}}{{DR}}×\frac{?}{\mathrm{10}}=\mathrm{1}..\left({i}\right)\left[\bigtriangleup{BCR}\:{with}\:{transversal}\:{MQD}\right] \\ $$$$\frac{{BM}}{\mathrm{6}}=\frac{{MQ}}{\mathrm{4}}\Rightarrow{BM}=\mathrm{3}{x},{MQ}=\mathrm{2}{x} \\ $$$$\frac{{DR}}{{RC}}×\frac{\mathrm{6}{x}}{\mathrm{3}{x}}×\frac{\mathrm{2}{x}}{\mathrm{4}{x}}=\mathrm{1}\Rightarrow{DR}={RC}\left[\bigtriangleup{MCD},{trns}.{BQR}\right] \\ $$$$\left({i}\right)\Rightarrow\mathrm{2}×\frac{?}{\mathrm{10}}=\mathrm{1}\Rightarrow?=\frac{\mathrm{10}}{\mathrm{2}}=\mathrm{5} \\ $$
Commented by A5T last updated on 24/Jun/24