Menu Close

Question-208866




Question Number 208866 by Adeyemi889 last updated on 26/Jun/24
Commented by Adeyemi889 last updated on 26/Jun/24
partial FRaction
$${partial}\:{F}\boldsymbol{{Raction}} \\ $$$$ \\ $$
Answered by Sutrisno last updated on 26/Jun/24
=((x^5 +4x^3 )/(x^4 −2x^3 +3x^2 −4x+2))  =x+2+((5x^3 −2x^2 +6x−4)/((x^2 +2)(x−1)^2 ))  ((5x^3 −2x^2 +6x−4)/((x^2 +2)(x−1)^2 ))=((ax+b)/(x^2 +2))+(c/(x−1))+(d/((x−1)^2 ))  5x^3 −2x^2 +6x−4=(ax+b)(x−1)^2 +c(x^2 +2)(x−1)+d(x^2 +2)  •x=1    d=(5/3)  •x=0     b−2c+2d=−4  •x=−1     −4a+4b−6c+3d=−17  •x=2     2a+b+6c+6d=40  didapat :a=(4/9),b=((16)/9),c=((41)/9)  fraksi :  x+2+((4x+16)/(9(x^2 +2)))+((41)/(9(x−1)))+(5/(3(x−1)^2 ))
$$=\frac{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}} }{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}} \\ $$$$={x}+\mathrm{2}+\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} }=\frac{{ax}+{b}}{{x}^{\mathrm{2}} +\mathrm{2}}+\frac{{c}}{{x}−\mathrm{1}}+\frac{{d}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{5}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}=\left({ax}+{b}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{c}\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}−\mathrm{1}\right)+{d}\left({x}^{\mathrm{2}} +\mathrm{2}\right) \\ $$$$\bullet{x}=\mathrm{1} \\ $$$$\:\:{d}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\bullet{x}=\mathrm{0} \\ $$$$\:\:\:{b}−\mathrm{2}{c}+\mathrm{2}{d}=−\mathrm{4} \\ $$$$\bullet{x}=−\mathrm{1} \\ $$$$\:\:\:−\mathrm{4}{a}+\mathrm{4}{b}−\mathrm{6}{c}+\mathrm{3}{d}=−\mathrm{17} \\ $$$$\bullet{x}=\mathrm{2} \\ $$$$\:\:\:\mathrm{2}{a}+{b}+\mathrm{6}{c}+\mathrm{6}{d}=\mathrm{40} \\ $$$${didapat}\::{a}=\frac{\mathrm{4}}{\mathrm{9}},{b}=\frac{\mathrm{16}}{\mathrm{9}},{c}=\frac{\mathrm{41}}{\mathrm{9}} \\ $$$${fraksi}\:: \\ $$$${x}+\mathrm{2}+\frac{\mathrm{4}{x}+\mathrm{16}}{\mathrm{9}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{41}}{\mathrm{9}\left({x}−\mathrm{1}\right)}+\frac{\mathrm{5}}{\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *