Question Number 208908 by alcohol last updated on 26/Jun/24
$${I}\left({a},{b}\right)\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {t}^{{a}} \left(\mathrm{1}−{t}\right)^{{b}} {dt} \\ $$$${Note}\::\:{I}\left({a},{b}\right)\:=\:\frac{{a}}{{b}+\mathrm{1}}{I}\left({a}−\mathrm{1},{b}+\mathrm{1}\right) \\ $$$${show}\:{that} \\ $$$$\bullet\:{I}\left({a}+\mathrm{1},\:{b}\right)\:+\:{I}\left({a},{b}+\mathrm{1}\right)\:=\:{I}\left({a},\:{b}\right) \\ $$$$\bullet\:{find}\:{B}\left({a}+\mathrm{1},\:{b}+\mathrm{1}\right)\:{interms}\:{of}\:{B}\left({a},{b}\right) \\ $$$$\bullet\:{use}\:{I}\left({a},{b}\right)\:=\:{I}\left({b},{a}\right)\:{and}\:{deduce}\:{I}\left(\frac{\mathrm{5}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$