Menu Close

The-a-2024-2044-2032-2040-2036-




Question Number 208876 by Tawa11 last updated on 26/Jun/24
The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛  𝙰.2044  𝙱.2032  𝙲.2040  𝙳.2036
The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛
𝙰.2044
𝙱.2032
𝙲.2040
𝙳.2036
Commented by mr W last updated on 26/Jun/24
none of them.
$${none}\:{of}\:{them}. \\ $$
Commented by Tawa11 last updated on 26/Jun/24
Thanks sir.  Answer should be  2052 sir?  by just adding 28 to 2024?
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{Answer}\:\mathrm{should}\:\mathrm{be}\:\:\mathrm{2052}\:\mathrm{sir}? \\ $$$$\mathrm{by}\:\mathrm{just}\:\mathrm{adding}\:\mathrm{28}\:\mathrm{to}\:\mathrm{2024}? \\ $$
Commented by A5T last updated on 26/Jun/24
The +28 rule works only for leap years.
$${The}\:+\mathrm{28}\:{rule}\:{works}\:{only}\:{for}\:{leap}\:{years}. \\ $$
Commented by mr W last updated on 26/Jun/24
2024 is a leap year. the next year  with same calender must also be a  leap year. say it is 2024+4n.  we have n years with 366 days and  3n years with 365 days. such that  that year starts with the same  weekday as 2024,  3n×365+n×366=1461n must be   divisible by 7. we get n_(min) =7. that   means after 4×7=28 years, i.e. the   year 2052 has the same calender as   2024.
$$\mathrm{2024}\:{is}\:{a}\:{leap}\:{year}.\:{the}\:{next}\:{year} \\ $$$${with}\:{same}\:{calender}\:{must}\:{also}\:{be}\:{a} \\ $$$${leap}\:{year}.\:{say}\:{it}\:{is}\:\mathrm{2024}+\mathrm{4}{n}. \\ $$$${we}\:{have}\:{n}\:{years}\:{with}\:\mathrm{366}\:{days}\:{and} \\ $$$$\mathrm{3}{n}\:{years}\:{with}\:\mathrm{365}\:{days}.\:{such}\:{that} \\ $$$${that}\:{year}\:{starts}\:{with}\:{the}\:{same} \\ $$$${weekday}\:{as}\:\mathrm{2024}, \\ $$$$\mathrm{3}{n}×\mathrm{365}+{n}×\mathrm{366}=\mathrm{1461}{n}\:{must}\:{be}\: \\ $$$${divisible}\:{by}\:\mathrm{7}.\:{we}\:{get}\:{n}_{{min}} =\mathrm{7}.\:{that}\: \\ $$$${means}\:{after}\:\mathrm{4}×\mathrm{7}=\mathrm{28}\:{years},\:{i}.{e}.\:{the}\: \\ $$$${year}\:\mathrm{2052}\:{has}\:{the}\:{same}\:{calender}\:{as}\: \\ $$$$\mathrm{2024}. \\ $$
Commented by Tawa11 last updated on 26/Jun/24
Why 3n years in 365 day sir
$$\mathrm{Why}\:\mathrm{3n}\:\mathrm{years}\:\mathrm{in}\:\mathrm{365}\:\mathrm{day}\:\mathrm{sir} \\ $$
Commented by Tawa11 last updated on 26/Jun/24
Thanks sir. I appreciate
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$
Commented by mr W last updated on 26/Jun/24
a leap year has 366 days, a normal  year has 365 days.  among 4n years,  there are n leap   years, the other 3n years are normal  years.
$${a}\:{leap}\:{year}\:{has}\:\mathrm{366}\:{days},\:{a}\:{normal} \\ $$$${year}\:{has}\:\mathrm{365}\:{days}. \\ $$$${among}\:\mathrm{4}{n}\:{years},\:\:{there}\:{are}\:{n}\:{leap}\: \\ $$$${years},\:{the}\:{other}\:\mathrm{3}{n}\:{years}\:{are}\:{normal} \\ $$$${years}. \\ $$
Answered by A5T last updated on 26/Jun/24
2024 January- x day of the week  2025        ∥           -  x+2 day  2026        ∥           - x+3  2027        ∥           -x+4  2028        ∥           -x+5  2029        ∥           -x+7 ≡ x(mod 7)  But 2029 is not a leap year, so you continue   with this process until you get a leap year(One  gets 2052).  [Add +2 if the previous year was a leap year,  +1 otherwise].
$$\mathrm{2024}\:{January}-\:{x}\:{day}\:{of}\:{the}\:{week} \\ $$$$\mathrm{2025}\:\:\:\:\:\:\:\:\shortparallel\:\:\:\:\:\:\:\:\:\:\:-\:\:{x}+\mathrm{2}\:{day} \\ $$$$\mathrm{2026}\:\:\:\:\:\:\:\:\shortparallel\:\:\:\:\:\:\:\:\:\:\:-\:{x}+\mathrm{3} \\ $$$$\mathrm{2027}\:\:\:\:\:\:\:\:\shortparallel\:\:\:\:\:\:\:\:\:\:\:-{x}+\mathrm{4} \\ $$$$\mathrm{2028}\:\:\:\:\:\:\:\:\shortparallel\:\:\:\:\:\:\:\:\:\:\:-{x}+\mathrm{5} \\ $$$$\mathrm{2029}\:\:\:\:\:\:\:\:\shortparallel\:\:\:\:\:\:\:\:\:\:\:-{x}+\mathrm{7}\:\equiv\:{x}\left({mod}\:\mathrm{7}\right) \\ $$$${But}\:\mathrm{2029}\:{is}\:{not}\:{a}\:{leap}\:{year},\:{so}\:{you}\:{continue}\: \\ $$$${with}\:{this}\:{process}\:{until}\:{you}\:{get}\:{a}\:{leap}\:{year}\left({One}\right. \\ $$$$\left.{gets}\:\mathrm{2052}\right). \\ $$$$\left[{Add}\:+\mathrm{2}\:{if}\:{the}\:{previous}\:{year}\:{was}\:{a}\:{leap}\:{year},\right. \\ $$$$\left.+\mathrm{1}\:{otherwise}\right]. \\ $$
Commented by Tawa11 last updated on 26/Jun/24
Thanks sir, I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by A5T last updated on 26/Jun/24
If y is a leap year, then the number of leap  years from y to y+4q(excluding) is q  x+q+4q≡x(mod 7)  ⇒5q≡0(mod 7)⇒q≡0(mod 7)⇒4q≡0(mod 28)  So, always add multiples of 28 to get a  leap year starting from the same day.
$${If}\:{y}\:{is}\:{a}\:{leap}\:{year},\:{then}\:{the}\:{number}\:{of}\:{leap} \\ $$$${years}\:{from}\:{y}\:{to}\:{y}+\mathrm{4}{q}\left({excluding}\right)\:{is}\:{q} \\ $$$${x}+{q}+\mathrm{4}{q}\equiv{x}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\mathrm{5}{q}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right)\Rightarrow{q}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right)\Rightarrow\mathrm{4}{q}\equiv\mathrm{0}\left({mod}\:\mathrm{28}\right) \\ $$$${So},\:{always}\:{add}\:{multiples}\:{of}\:\mathrm{28}\:{to}\:{get}\:{a} \\ $$$${leap}\:{year}\:{starting}\:{from}\:{the}\:{same}\:{day}. \\ $$
Commented by Tinku Tara last updated on 26/Jun/24
In leap years you need to also  consider the fact year divible by  100 are not leap years however  years divisble by 400 are leap years.  1900 not a leap year  2000 a leap year
$$\mathrm{In}\:\mathrm{leap}\:\mathrm{years}\:\mathrm{you}\:\mathrm{need}\:\mathrm{to}\:\mathrm{also} \\ $$$$\mathrm{consider}\:\mathrm{the}\:\mathrm{fact}\:\mathrm{year}\:\mathrm{divible}\:\mathrm{by} \\ $$$$\mathrm{100}\:\mathrm{are}\:\mathrm{not}\:\mathrm{leap}\:\mathrm{years}\:\mathrm{however} \\ $$$$\mathrm{years}\:\mathrm{divisble}\:\mathrm{by}\:\mathrm{400}\:\mathrm{are}\:\mathrm{leap}\:\mathrm{years}. \\ $$$$\mathrm{1900}\:\mathrm{not}\:\mathrm{a}\:\mathrm{leap}\:\mathrm{year} \\ $$$$\mathrm{2000}\:\mathrm{a}\:\mathrm{leap}\:\mathrm{year} \\ $$
Commented by A5T last updated on 26/Jun/24
Yes, if a year divisible by 100 but not by 400  is between y and y+4q, then the number of  leap years from y to y+4q(excluding) is q−1  ⇒x+q−1+4q≡x(mod 7)⇒5q≡1(mod 7)  ⇒q≡3(mod 7)⇒4q=4(7k+3)=28k+12  So,12 is the smallest we add in that case.
$${Yes},\:{if}\:{a}\:{year}\:{divisible}\:{by}\:\mathrm{100}\:{but}\:{not}\:{by}\:\mathrm{400} \\ $$$${is}\:\boldsymbol{{between}}\:{y}\:{and}\:{y}+\mathrm{4}{q},\:{then}\:{the}\:{number}\:{of} \\ $$$${leap}\:{years}\:{from}\:{y}\:{to}\:{y}+\mathrm{4}{q}\left({excluding}\right)\:{is}\:{q}−\mathrm{1} \\ $$$$\Rightarrow{x}+{q}−\mathrm{1}+\mathrm{4}{q}\equiv{x}\left({mod}\:\mathrm{7}\right)\Rightarrow\mathrm{5}{q}\equiv\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow{q}\equiv\mathrm{3}\left({mod}\:\mathrm{7}\right)\Rightarrow\mathrm{4}{q}=\mathrm{4}\left(\mathrm{7}{k}+\mathrm{3}\right)=\mathrm{28}{k}+\mathrm{12} \\ $$$${So},\mathrm{12}\:{is}\:{the}\:{smallest}\:{we}\:{add}\:{in}\:{that}\:{case}. \\ $$
Answered by BaliramKumar last updated on 27/Jun/24
         determinant (((year),(Remainder),(Adding)),((2023),(((23)/4) =^R  3),(+11)),((2022),(((22)/4) =^R  2),(+11)),((2021),(((21)/4) =^R  1),(+6)),((1900),(((00)/4) =^R  0),(±6)),((2024),(Leap),(+28)),((2080),(Leap),(+40)),((2072),(Leap),(+40)),((1972),(Leap),(+28)))
$$ \\ $$$$\:\:\:\:\:\:\begin{array}{|c|c|c|c|c|c|c|c|c|}{\mathrm{year}}&\hline{\mathrm{Remainder}}&\hline{\mathrm{Adding}}\\{\mathrm{2023}}&\hline{\frac{\mathrm{23}}{\mathrm{4}}\:\overset{\mathrm{R}} {=}\:\mathrm{3}}&\hline{+\mathrm{11}}\\{\mathrm{2022}}&\hline{\frac{\mathrm{22}}{\mathrm{4}}\:\overset{\mathrm{R}} {=}\:\mathrm{2}}&\hline{+\mathrm{11}}\\{\mathrm{2021}}&\hline{\frac{\mathrm{21}}{\mathrm{4}}\:\overset{\mathrm{R}} {=}\:\mathrm{1}}&\hline{+\mathrm{6}}\\{\mathrm{1900}}&\hline{\frac{\mathrm{00}}{\mathrm{4}}\:\overset{\mathrm{R}} {=}\:\mathrm{0}}&\hline{\pm\mathrm{6}}\\{\mathrm{2024}}&\hline{\mathrm{Leap}}&\hline{+\mathrm{28}}\\{\mathrm{2080}}&\hline{\mathrm{Leap}}&\hline{+\mathrm{40}}\\{\mathrm{2072}}&\hline{\mathrm{Leap}}&\hline{+\mathrm{40}}\\{\mathrm{1972}}&\hline{\mathrm{Leap}}&\hline{+\mathrm{28}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *