Menu Close

Question-208913




Question Number 208913 by efronzo1 last updated on 27/Jun/24
Answered by A5T last updated on 27/Jun/24
((sinβ)/6)=(1/(AC));((sin(60−β))/3)=(1/(AC))  ⇒((sin(60−β))/(sinβ))=(1/2)⇒β≈40.8934  ⇒sinβ≈0.654654; we can then find AC=(6/(sinβ))  AC≈9.165151
$$\frac{{sin}\beta}{\mathrm{6}}=\frac{\mathrm{1}}{{AC}};\frac{{sin}\left(\mathrm{60}−\beta\right)}{\mathrm{3}}=\frac{\mathrm{1}}{{AC}} \\ $$$$\Rightarrow\frac{{sin}\left(\mathrm{60}−\beta\right)}{{sin}\beta}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\beta\approx\mathrm{40}.\mathrm{8934} \\ $$$$\Rightarrow{sin}\beta\approx\mathrm{0}.\mathrm{654654};\:{we}\:{can}\:{then}\:{find}\:{AC}=\frac{\mathrm{6}}{{sin}\beta} \\ $$$${AC}\approx\mathrm{9}.\mathrm{165151} \\ $$
Answered by mr W last updated on 27/Jun/24
∠BCD=90°−α+90°−β=120°  BD^2 =6^2 +3^2 −2×3×6 cos 120°=63  AC=2R=((BD)/(sin ∠BCD))=((√(63))/(sin 120°))                    =2(√(21)) ≈9.165
$$\angle{BCD}=\mathrm{90}°−\alpha+\mathrm{90}°−\beta=\mathrm{120}° \\ $$$${BD}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} −\mathrm{2}×\mathrm{3}×\mathrm{6}\:\mathrm{cos}\:\mathrm{120}°=\mathrm{63} \\ $$$${AC}=\mathrm{2}{R}=\frac{{BD}}{\mathrm{sin}\:\angle{BCD}}=\frac{\sqrt{\mathrm{63}}}{\mathrm{sin}\:\mathrm{120}°} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\sqrt{\mathrm{21}}\:\approx\mathrm{9}.\mathrm{165} \\ $$
Answered by mr W last updated on 27/Jun/24
Commented by mr W last updated on 27/Jun/24
CE=2×6=12  DE=12+3=15  AD=((15)/( (√3)))=5(√3)  AC=(√((5(√3))^2 +3^2 ))=2(√(21))≈9.165
$${CE}=\mathrm{2}×\mathrm{6}=\mathrm{12} \\ $$$${DE}=\mathrm{12}+\mathrm{3}=\mathrm{15} \\ $$$${AD}=\frac{\mathrm{15}}{\:\sqrt{\mathrm{3}}}=\mathrm{5}\sqrt{\mathrm{3}} \\ $$$${AC}=\sqrt{\left(\mathrm{5}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{21}}\approx\mathrm{9}.\mathrm{165} \\ $$
Commented by Tawa11 last updated on 27/Jun/24
weldone sirs
$$\mathrm{weldone}\:\mathrm{sirs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *