Menu Close

Question-208915




Question Number 208915 by Tawa11 last updated on 27/Jun/24
Answered by mr W last updated on 27/Jun/24
Commented by mr W last updated on 27/Jun/24
BC^2 =a^2 +b^2   2R=((BC)/(sin 45°))=(√(2(a^2 +b^2 )))  ⇒a^2 +b^2 =2R^2   blue area=((π(a^2 +b^2 ))/4)=((πR^2 )/2)       =((area of red circle)/2)=((4π)/2)=2π
$${BC}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\mathrm{2}{R}=\frac{{BC}}{\mathrm{sin}\:\mathrm{45}°}=\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} \\ $$$${blue}\:{area}=\frac{\pi\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{\mathrm{4}}=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{{area}\:{of}\:{red}\:{circle}}{\mathrm{2}}=\frac{\mathrm{4}\pi}{\mathrm{2}}=\mathrm{2}\pi \\ $$
Commented by Tawa11 last updated on 27/Jun/24
Thanks sir.  I appreciate sir.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *