Question Number 208951 by hardmath last updated on 28/Jun/24
$$\mathrm{2}^{\mathrm{2024}} \::\:\mathrm{2024}\:=\:…\:\left(\mathrm{Remainder}\:=\:?\right) \\ $$
Answered by A5T last updated on 28/Jun/24
$$\left(\mathrm{2}^{\mathrm{11}} \right)^{\mathrm{184}} \:\:\overset{\mathrm{2024}} {\equiv}\:\mathrm{24}^{\mathrm{184}} \\ $$$$\mathrm{2024}=\mathrm{8}×\mathrm{11}×\mathrm{23} \\ $$$$\mathrm{24}^{\mathrm{184}} \equiv\mathrm{2}^{\mathrm{184}} \equiv\mathrm{32}^{\mathrm{36}} \mathrm{2}^{\mathrm{4}} \equiv\mathrm{5}\left({mod}\:\mathrm{11}\right) \\ $$$$\mathrm{24}^{\mathrm{184}} \equiv\mathrm{0}\left({mod}\:\mathrm{8}\right) \\ $$$$\mathrm{24}^{\mathrm{184}} \equiv\mathrm{1}\left({mod}\:\mathrm{23}\right) \\ $$$$\mathrm{23}{k}+\mathrm{1}\equiv\mathrm{0}\left({mod}\:\mathrm{8}\right)\Rightarrow{k}=\mathrm{8}{q}+\mathrm{1} \\ $$$$\mathrm{23}\left(\mathrm{8}{q}+\mathrm{1}\right)+\mathrm{1}=\mathrm{23}×\mathrm{8}{q}+\mathrm{24}\equiv\mathrm{5}\left({mod}\:\:\mathrm{11}\right) \\ $$$$\mathrm{8}{q}\equiv\mathrm{3}\left({mod}\:\mathrm{11}\right)\Rightarrow{q}\equiv\mathrm{10}\left({mod}\:\mathrm{11}\right)\Rightarrow{q}=\mathrm{11}{c}+\mathrm{10} \\ $$$$\mathrm{2}^{\mathrm{2024}} =\mathrm{2024}{c}+\mathrm{23}×\mathrm{8}×\mathrm{10}+\mathrm{24}=\mathrm{2024}{c}+\mathrm{1864} \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{2024}} \equiv\mathrm{1864}\left({mod}\:\mathrm{2024}\right) \\ $$
Commented by hardmath last updated on 28/Jun/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$$$\mathrm{answer}:\:\mathrm{2024}? \\ $$
Commented by A5T last updated on 28/Jun/24
$$\mathrm{1864} \\ $$
Commented by hardmath last updated on 30/Jun/24
$$\mathrm{Dear}\:\mathrm{professor},\:\mathrm{demon}\:\mathrm{residue}\:\mathrm{theorem}? \\ $$$$ \\ $$Demon residue theorem
Commented by hardmath last updated on 30/Jun/24
$$\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by A5T last updated on 01/Jul/24
$${Chinese}\:{Remainder}\:{Theorem}\:{is}\:{the}\:{method}\:{I} \\ $$$${know}\:{this}\:{is}\:{called}. \\ $$