Question Number 208959 by hardmath last updated on 28/Jun/24
$$\mathrm{If}\:\:\:\boldsymbol{\mathrm{z}}\:=\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\:+\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\boldsymbol{\mathrm{i}} \\ $$$$\mathrm{Find}\:\:\:\left(\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{2z}\right)\centerdot\left(\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{z}\right)\:=\:? \\ $$
Answered by grigoriy last updated on 29/Jun/24
$$ \\ $$$${f}\left({z}\right)\:=\:\left({z}^{\mathrm{4}} \:+\:\mathrm{2}{z}\right)\left({z}^{\mathrm{3}} \:+\:{z}\right); \\ $$$${z}^{\mathrm{4}} \:+\:\mathrm{2}{z}\:=\:{f}_{\mathrm{1}} \left({z}\right);\:{z}^{\mathrm{3}} \:+\:{z}\:=\:{f}_{\mathrm{2}} \left({z}\right); \\ $$$${f}\left({z}\right)\:=\:{f}_{\mathrm{1}} \left({z}\right){f}_{\mathrm{2}} \left({z}\right); \\ $$$${z}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:=\:{R}\left({cos}\left(\varphi\right)\:+\:{isin}\left(\varphi\right)\right); \\ $$$${R}^{\mathrm{2}} \:=\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:=\:\mathrm{1};\:\Rightarrow\:{R}\:=\:\mathrm{1};\:\left({R}\:=\:\mid{f}\left({z}\right)\mid\right); \\ $$$${cos}\left(\varphi\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}};\:{sin}\left(\varphi\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}};\:\Rightarrow\:{cos}\left(\varphi\right)\:<\:\mathrm{0};\:{sin}\left(\varphi\right)\:>\:\mathrm{0}\:\Rightarrow\:\pi\:<\:\varphi\:<\:\frac{\pi}{\mathrm{2}};\: \\ $$$${tg}\left(\varphi\right)\:=\:\frac{{sin}\left(\varphi\right)}{{cos}\left(\varphi\right)}\:=\:−\sqrt{\mathrm{3}};\:\Rightarrow\:\varphi\:=\:{arctg}\left(−\sqrt{\mathrm{3}}\right)\:=\:\pi\:−\:{arctg}\left(\sqrt{\mathrm{3}}\right)\:=\:\pi\:−\:\frac{\pi}{\mathrm{3}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}; \\ $$$$\pi\:<\:\varphi\:<\:\frac{\pi}{\mathrm{2}};\:\Rightarrow\:\varphi\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}; \\ $$$${z}\:=\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:+\:{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right); \\ $$$${z}^{\mathrm{4}} \:=\:\left({cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:+\:{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right)^{\mathrm{4}} \:=\:{cos}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:{isin}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right); \\ $$$${z}^{\mathrm{4}} \:=\:{cos}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:{isin}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right); \\ $$$${f}_{\mathrm{1}} \left({z}\right)\:=\:{z}^{\mathrm{4}} \:+\:\mathrm{2}{z}; \\ $$$${f}_{\mathrm{1}} \left({z}\right)\:=\:{cos}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:{isin}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:+\:\mathrm{2}{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right); \\ $$$${f}_{\mathrm{1}} \left({z}\right)\:=\:\left({cos}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right)\:+\:{i}\left({sin}\left(\frac{\mathrm{8}\pi}{\mathrm{3}}\right)\:+\:\mathrm{2}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right); \\ $$$${z}^{\mathrm{4}} \:=\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+\:{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{4}} ; \\ $$$$\left({a}\:+\:{b}\right)^{\mathrm{4}} \:=\:\underset{{n}\:=\:\mathrm{0}} {\overset{\mathrm{4}} {\sum}}{C}_{\mathrm{4}} ^{{n}} {a}^{\mathrm{4}−\:{n}} {b}^{{n}} \:=\:{C}_{\mathrm{4}} ^{\mathrm{0}} {a}^{\mathrm{4}} \:+\:{C}_{\mathrm{4}} ^{\mathrm{1}} {a}^{\mathrm{3}} {b}\:+\:{C}_{\mathrm{4}} ^{\mathrm{2}} {a}^{\mathrm{2}} {b}^{\mathrm{2}} \:+\:{C}_{\mathrm{4}} ^{\mathrm{3}} {ab}^{\mathrm{3}} \:+\:{C}_{\mathrm{4}} ^{\mathrm{4}} {b}^{\mathrm{4}} ; \\ $$$${C}_{\mathrm{4}} ^{\mathrm{0}} \:=\:{C}_{\mathrm{4}} ^{\mathrm{4}} \:=\:\mathrm{1}; \\ $$$${C}_{\mathrm{4}} ^{\mathrm{1}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{3}} ^{\mathrm{0}} \:=\:{C}_{\mathrm{2}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{2}} ^{\mathrm{0}} \:+\:\mathrm{1}\:=\:{C}_{\mathrm{1}} ^{\mathrm{1}} +\:{C}_{\mathrm{1}} ^{\mathrm{0}} \:+\:\mathrm{2}\:=\:\mathrm{4}; \\ $$$${C}_{\mathrm{4}} ^{\mathrm{2}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{2}} \:+\:{C}_{\mathrm{3}} ^{\mathrm{1}} \:=\:{C}_{\mathrm{2}} ^{\mathrm{2}} \:+\:{C}_{\mathrm{2}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{2}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{2}} ^{\mathrm{0}} \:=\:\mathrm{1}\:+\:\mathrm{2}{C}_{\mathrm{2}} ^{\mathrm{1}} \:+\:\mathrm{1}\:=\:\mathrm{2}\:+\:\mathrm{2}\left({C}_{\mathrm{1}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{1}} ^{\mathrm{0}} \right)\:=\:\mathrm{6}; \\ $$$${C}_{\mathrm{4}} ^{\mathrm{3}} \:=\:{C}_{\mathrm{4}} ^{\mathrm{4}\:−\:\mathrm{3}} \:=\:{C}_{\mathrm{4}} ^{\mathrm{1}} \:=\:\mathrm{4}; \\ $$$$\left({a}\:+\:{b}\right)^{\mathrm{4}} \:=\:{a}^{\mathrm{4}} \:+\:\mathrm{4}{a}^{\mathrm{3}} {b}\:+\:\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:+\:\mathrm{4}{ab}^{\mathrm{3}} \:+\:{b}^{\mathrm{4}} ; \\ $$$${z}^{\mathrm{4}} \:=\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\:\mathrm{4}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \centerdot\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\centerdot{i}\:+\:\mathrm{6}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \centerdot\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} \centerdot{i}^{\mathrm{2}} +\:\mathrm{4}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\centerdot\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{3}} \centerdot{i}^{\mathrm{3}} +\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{4}} \centerdot{i}^{\mathrm{4}} ; \\ $$$${i}\:=\:\sqrt{−\mathrm{1}}\:=\:\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ;\:{i}^{\mathrm{2}} \:=\:−\mathrm{1};\:{i}^{\mathrm{3}} \:=\:{i}\centerdot{i}^{\mathrm{2}} \:=\:−{i};\:{i}^{\mathrm{4}} \:=\:\left(−\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{1}; \\ $$$${z}^{\mathrm{4}} \:=\:\frac{\mathrm{1}}{\mathrm{16}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{i}\:−\:\frac{\mathrm{9}}{\mathrm{8}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{i}\:+\:\frac{\mathrm{9}}{\mathrm{16}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}; \\ $$$${z}^{\mathrm{4}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}; \\ $$$$\mathrm{2}{z}\:=\:\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)\:=−\mathrm{1}\:+\:\sqrt{\mathrm{3}}{i}; \\ $$$${f}_{\mathrm{1}} \left({z}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:−\:\mathrm{1}\:+\:\sqrt{\mathrm{3}}{i}\:=\:−\frac{\mathrm{3}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}; \\ $$$${f}_{\mathrm{1}} \left({z}\right)\:=\:−\frac{\mathrm{3}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}; \\ $$$${f}_{\mathrm{2}} \left({z}\right)\:=\:{z}^{\mathrm{3}} \:+\:{z}; \\ $$$${z}^{\mathrm{3}} \:=\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)^{\mathrm{3}} ; \\ $$$$\left({a}\:+\:{b}\right)^{\mathrm{3}} \:=\:\underset{{n}\:=\:\mathrm{0}} {\overset{\mathrm{3}} {\sum}}{C}_{\mathrm{3}} ^{{n}} {a}^{\mathrm{3}\:−\:{n}} {b}^{{n}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{0}} {a}^{\mathrm{3}} \:+\:{C}_{\mathrm{3}} ^{\mathrm{1}} {a}^{\mathrm{2}} {b}\:+\:{C}_{\mathrm{3}} ^{\mathrm{2}} {ab}^{\mathrm{2}} \:+\:{C}_{\mathrm{3}} ^{\mathrm{3}} {b}^{\mathrm{3}} ; \\ $$$${C}_{\mathrm{3}} ^{\mathrm{0}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{3}} \:=\:\mathrm{1}; \\ $$$${C}_{\mathrm{3}} ^{\mathrm{1}} \:=\:{C}_{\mathrm{2}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{2}} ^{\mathrm{0}} \:=\:{C}_{\mathrm{1}} ^{\mathrm{1}} \:+\:{C}_{\mathrm{1}} ^{\mathrm{0}} \:+\:\mathrm{1}\:=\:\mathrm{3}; \\ $$$${C}_{\mathrm{3}} ^{\mathrm{2}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{3}\:−\:\mathrm{2}} \:=\:{C}_{\mathrm{3}} ^{\mathrm{1}} \:=\:\mathrm{3}; \\ $$$$\left({a}\:+\:{b}\right)^{\mathrm{3}} \:=\:{a}^{\mathrm{3}} \:+\:\mathrm{3}{a}^{\mathrm{2}} {b}\:+\:\mathrm{3}{ab}^{\mathrm{2}} \:+\:{b}^{\mathrm{3}} ; \\ $$$${z}^{\mathrm{3}} \:=\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} +\:\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:+\:\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} {i}^{\mathrm{2}} +\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{3}} {i}^{\mathrm{3}} ; \\ $$$${z}^{\mathrm{3}} \:=\:−\frac{\mathrm{1}}{\mathrm{8}}\:+\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}{i}\:+\:\frac{\mathrm{9}}{\mathrm{8}}\:−\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}{i}\:=\:\mathrm{1}; \\ $$$${z}^{\mathrm{3}} \:=\:\mathrm{1}; \\ $$$${f}_{\mathrm{2}} \left({z}\right)\:=\:\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}; \\ $$$${f}\left({z}\right)\:=\:{f}_{\mathrm{1}} \left({z}\right){f}_{\mathrm{2}} \left({z}\right)\:=\:\left(−\frac{\mathrm{3}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)\:=\:−\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}{i}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right); \\ $$$${f}\left({z}\right)\:=\:−\frac{\mathrm{3}}{\mathrm{4}}\:−\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}{i}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{i}−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\:=\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}\:−\:\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}{i}; \\ $$$${Ansver}:\:\left({z}^{\mathrm{4}} \:+\:\mathrm{2}{z}\right)\left({z}^{\mathrm{3}} \:+\:{z}\right)\:=\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}\:−\:\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}{i}; \\ $$
Answered by grigoriy last updated on 29/Jun/24