Question Number 209021 by hardmath last updated on 30/Jun/24
Commented by mr W last updated on 30/Jun/24
$${can}\:{you}\:{please}\:{read}\:{your}\:{question}\: \\ $$$${carefully}\:{once}\:{again}\:{and}\:{check}\:{if} \\ $$$${some}\:{data}\:{are}\:{missing}\:{or}\:{wrong}\:{or} \\ $$$${unclear}? \\ $$
Commented by mr W last updated on 30/Jun/24
$${clear}: \\ $$$${there}\:{are}\:{k}\:{families}.\:{the}\:{family}\:{i} \\ $$$${has}\:{a}_{{i}} \:{members}\:\left({with}\:{i}=\mathrm{1},\mathrm{2},\:…,\:{k}\right). \\ $$$${the}\:{members}\:{of}\:{each}\:{family}\:{must} \\ $$$${sit}\:{together}. \\ $$$${unclear}: \\ $$$${there}\:{are}\:{I}\:{spaces}\:{around}\:{the}\:{table}. \\ $$$${what}\:{do}\:{you}\:{mean}\:{with}\:“{spaces}''? \\ $$$${there}\:{are}\:{seats}\:\left({I}>{k}\right). \\ $$$${is}\:{something}\:{missing}? \\ $$$${do}\:{you}\:{want}\:{to}\:{say}\:{a}\:{speical}\:{number} \\ $$$${of}\:{seats}? \\ $$$${how}\:{many}\:{ways}\:{can}\:{we}\:{seat}\:{k} \\ $$$${member}\:{of}\:{families}\:{around}\:{a}\:{round} \\ $$$${table}. \\ $$$${do}\:{you}\:{mean}\:{all}\:{the}\:{members}\:{of}\:{k} \\ $$$${families}? \\ $$
Commented by hardmath last updated on 30/Jun/24
$$\mathrm{Dear}\:\mathrm{Professor}, \\ $$$$ \\ $$Yes, we have L empty seats around the table (which people should sit on those seats), the question is how to seat all the people around the table under these conditions (if you see, the number of people is a_1+a_2+..+a_k)
Commented by mr W last updated on 30/Jun/24
$${it}\:{is}\:{only}\:{given}\:{that}\:{L}>{k},\:{so}\:{you} \\ $$$${can}\:{not}\:{seat}\:{all}\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{k}} \:{people}. \\ $$$${must}\:{at}\:{least}\:{one}\:{member}\:{from}\:{each} \\ $$$${family}\:{be}\:{seated}? \\ $$
Commented by hardmath last updated on 30/Jun/24
Commented by mr W last updated on 30/Jun/24
$${i}\:{assumed}\:{k}\leqslant{I}\leqslant{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{k}} \:{and} \\ $$$${at}\:{least}\:{one}\:{member}\:{of}\:{each}\:{family} \\ $$$${must}\:{be}\:{choosen}. \\ $$
Commented by hardmath last updated on 30/Jun/24
$$ \\ $$
Answered by mr W last updated on 30/Jun/24
$${I}\:{seats}\:{around}\:{a}\:{round}\:{table}\:{are}\:{to} \\ $$$${be}\:{taken}\:{by}\:{the}\:{members}\:{of}\:{k}\: \\ $$$${families}\:{and}\:{the}\:{members}\:{of}\:{the} \\ $$$${same}\:{family}\:{must}\:{sit}\:{together}. \\ $$$${that}\:{means}\:{at}\:{least}\:{one}\:{member}\:{of} \\ $$$${each}\:{family}\:{must}\:{be}\:{choosen}. \\ $$$${to}\:{arrange}\:{k}\:{families}\:{around}\:{the} \\ $$$${round}\:{table}\:{there}\:{are}\:\left({k}−\mathrm{1}\right)!\:{ways}. \\ $$$${say}\:{from}\:{family}\:{i}\:{we}\:{choose}\:{n}_{{i}} \: \\ $$$${members},\:\mathrm{1}\leqslant{n}_{{i}} \leqslant{a}_{{i}} . \\ $$$${n}_{\mathrm{1}} +{n}_{\mathrm{2}} +{n}_{\mathrm{3}} +…+{n}_{{k}} ={I}\:\:\:{with}\:{I}\:\geqslant{k} \\ $$$${to}\:{select}\:{n}_{{i}} \:{from}\:{a}_{{i}} \:{members}\:{in}\:{the} \\ $$$${family}\:{i}\:{there}\:{are}\:{C}_{{n}_{{i}} } ^{{a}_{{i}} } \:{ways}\:{and}\:{to} \\ $$$${arrange}\:{them}\:{there}\:{are}\:{n}_{{i}} !\:{ways}. \\ $$$${so}\:{the}\:{total}\:{number}\:{of}\:{ways}\:{is}\:{the} \\ $$$${coefficient}\:{of}\:{term}\:{x}^{{I}} \:{in}\:{the}\: \\ $$$${expansion} \\ $$$$\left({k}−\mathrm{1}\right)!\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left[\underset{{n}_{{i}} =\mathrm{1}} {\overset{{a}_{{i}} } {\sum}}{C}_{{n}_{{i}} } ^{{a}_{{i}} } \left({n}_{{i}} !\right){x}^{{n}_{{i}} } \right] \\ $$
Commented by hardmath last updated on 30/Jun/24
$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}… \\ $$$$ \\ $$That is, the final result is our answer given in red.?
Commented by mr W last updated on 30/Jun/24
$${it}\:{is}\:{just}\:{a}\:{generating}\:{function}.\:{its} \\ $$$${coefficient}\:{of}\:{x}^{{I}} \:{term}\:{is}\:{the}\:{answer}. \\ $$$${but}\:{we}\:{can}\:{not}\:{get}\:{a}\:{closed}\:{formula} \\ $$$${for}\:{the}\:{answer}. \\ $$
Commented by mr W last updated on 30/Jun/24
$${special}\:{case}: \\ $$$${all}\:{members}\:{of}\:{all}\:{k}\:{families}\:{are} \\ $$$${to}\:{be}\:{seated},\:{i}.{e}.\:{I}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{k}} . \\ $$$${the}\:{answer}\:{is}\:{then} \\ $$$$\left({k}−\mathrm{1}\right)!{a}_{\mathrm{1}} !{a}_{\mathrm{2}} !…{a}_{{k}} ! \\ $$
Commented by hardmath last updated on 30/Jun/24
$$ \\ $$Thank you very much dear Peafessor for the detailed explanation, I mentioned the full version of the question above on the page
Commented by mr W last updated on 01/Jul/24
$${example}: \\ $$$${there}\:{are}\:{three}\:{families}: \\ $$$${family}\:\mathrm{1}\:{has}\:\mathrm{3}\:{members} \\ $$$${family}\:\mathrm{2}\:{has}\:\mathrm{4}\:{members} \\ $$$${family}\:\mathrm{3}\:{has}\:\mathrm{5}\:{members} \\ $$$${the}\:{table}\:{has}\:{I}=\mathrm{10}\:{seats}. \\ $$$${GF}=\left(\mathrm{3}−\mathrm{1}\right)!\left(\mathrm{3}{x}+\mathrm{6}{x}^{\mathrm{2}} +\mathrm{6}{x}^{\mathrm{3}} \right)\left(\mathrm{4}{x}+\mathrm{12}{x}^{\mathrm{2}} +\mathrm{24}{x}^{\mathrm{3}} +\mathrm{24}{x}^{\mathrm{4}} \right)\left(\mathrm{5}+\mathrm{20}{x}^{\mathrm{2}} +\mathrm{60}{x}^{\mathrm{3}} +\mathrm{120}{x}^{\mathrm{4}} +\mathrm{120}{x}^{\mathrm{5}} \right) \\ $$$${the}\:{answer}\:{is}\:{the}\:{coef}.\:{of}\:{x}^{\mathrm{10}} :\:\mathrm{155520}. \\ $$$${i}.{e}.\:{there}\:{are}\:\mathrm{155520}\:{ways}\:{to}\:{occupy} \\ $$$${the}\:\mathrm{10}\:{seats}\:{around}\:{the}\:{table}. \\ $$
Commented by mr W last updated on 01/Jul/24