Menu Close

Question-209041




Question Number 209041 by alcohol last updated on 30/Jun/24
Commented by alcohol last updated on 30/Jun/24
find r
$${find}\:{r} \\ $$
Commented by mr W last updated on 01/Jul/24
Answered by mr W last updated on 01/Jul/24
say touching point on y=x^2  at P(p, p^2 )  center of circle C(2−r, 2−r)  tan θ=2p  2−r=p+r sin θ ⇒2−r=p+((2pr)/( (√(1+4p^2 ))))  ⇒r=((2−p)/(1+((2p)/( (√(1+4p^2 ))))))  2−r=p^2 −r cos θ ⇒2−r=p^2 −(r/( (√(1+4p^2 ))))  ⇒r=((2−p^2 )/(1−(1/( (√(1+4p^2 ))))))  ((2−p^2 )/(1−(1/( (√(1+4p^2 ))))))=((2−p)/(1+((2p)/( (√(1+4p^2 ))))))  ⇒p≈1.3328, r≈0.3446
$${say}\:{touching}\:{point}\:{on}\:{y}={x}^{\mathrm{2}} \:{at}\:{P}\left({p},\:{p}^{\mathrm{2}} \right) \\ $$$${center}\:{of}\:{circle}\:{C}\left(\mathrm{2}−{r},\:\mathrm{2}−{r}\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$$\mathrm{2}−{r}={p}+{r}\:\mathrm{sin}\:\theta\:\Rightarrow\mathrm{2}−{r}={p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}−{p}}{\mathrm{1}+\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\mathrm{2}−{r}={p}^{\mathrm{2}} −{r}\:\mathrm{cos}\:\theta\:\Rightarrow\mathrm{2}−{r}={p}^{\mathrm{2}} −\frac{{r}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}−{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\frac{\mathrm{2}−{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}=\frac{\mathrm{2}−{p}}{\mathrm{1}+\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{3328},\:{r}\approx\mathrm{0}.\mathrm{3446} \\ $$
Commented by mr W last updated on 30/Jun/24

Leave a Reply

Your email address will not be published. Required fields are marked *