Menu Close

Question-209066




Question Number 209066 by Tawa11 last updated on 01/Jul/24
Commented by Tawa11 last updated on 01/Jul/24
Answered by A5T last updated on 01/Jul/24
cos48°=((XA)/(19))⇒XA=19cos48°  ((XA)/t_(XA) )=((DA)/t_(DA) )⇒t_(XA) =((19cos48°×216)/(27))≈102 minutes
$${cos}\mathrm{48}°=\frac{{XA}}{\mathrm{19}}\Rightarrow{XA}=\mathrm{19}{cos}\mathrm{48}° \\ $$$$\frac{{XA}}{{t}_{{XA}} }=\frac{{DA}}{{t}_{{DA}} }\Rightarrow{t}_{{XA}} =\frac{\mathrm{19}{cos}\mathrm{48}°×\mathrm{216}}{\mathrm{27}}\approx\mathrm{102}\:{minutes} \\ $$
Commented by Tawa11 last updated on 01/Jul/24
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 01/Jul/24
Sir, how did you use cosine rule.  show me where  X is sir.
$$\mathrm{Sir},\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{use}\:\mathrm{cosine}\:\mathrm{rule}. \\ $$$$\mathrm{show}\:\mathrm{me}\:\mathrm{where}\:\:\mathrm{X}\:\mathrm{is}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 01/Jul/24
I understand now sir.  It formed right angled triangle
$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$$$\mathrm{It}\:\mathrm{formed}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *