Question Number 209098 by Spillover last updated on 01/Jul/24
Answered by A5T last updated on 02/Jul/24
$$\mathrm{4}=\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}{\mathrm{2}{g}}\Rightarrow{sin}\theta=\frac{\sqrt{\mathrm{8}{g}}}{{v}_{\mathrm{0}} } \\ $$$${R}={v}_{\mathrm{0}} {cos}\theta×\mathrm{2}{t}={v}_{\mathrm{0}} \sqrt{\mathrm{1}−\frac{\mathrm{8}{g}}{{v}_{\mathrm{0}} ^{\mathrm{2}} }}×\mathrm{2}{t}=\mathrm{2}{t}\sqrt{{v}_{\mathrm{0}} ^{\mathrm{2}} −\mathrm{8}{g}} \\ $$$${R}\:{is}\:{maximum}\:{when}\:{t}\:{is}\:{maximum} \\ $$$$\mathrm{4}=\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}\Rightarrow{t}=\sqrt{\frac{\mathrm{8}}{{g}}} \\ $$$$\Rightarrow{R}=\mathrm{2}\sqrt{\mathrm{8}}×\sqrt{\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}−\mathrm{8}}=\mathrm{4}\sqrt{\mathrm{2}}\left(\sqrt{\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}−\mathrm{8}}\right) \\ $$
Commented by Spillover last updated on 03/Jul/24
$$ \\ $$that's right, the question will be wrong after writing 8, they wrote g
Answered by Spillover last updated on 03/Jul/24
$${H}_{{max}} =\frac{{v}_{{y}} ^{\mathrm{2}} }{\mathrm{2}{g}}\:\:\:\:\:\:\:{v}_{{y}\:} ={v}\mathrm{sin}\:\theta\:\:\:\:\:\:{H}_{{max}} =\frac{\left({v}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\mathrm{2}{g}}\:\: \\ $$$${H}_{{max}} \leqslant\mathrm{4}\:\:{metres} \\ $$$$\frac{\left({v}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\mathrm{2}{g}}\:\:\leqslant\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:^{\mathrm{2}} \theta\leqslant\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} } \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\mathrm{cos}\:\theta=\sqrt{\mathrm{1}−\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }}\:\: \\ $$$${From}\:{Range}\: \\ $$$${R}=\frac{{v}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta}{{g}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}=\frac{{v}^{\mathrm{2}} \mathrm{2sin}\:\theta\mathrm{cos}\:\theta}{{g}} \\ $$$${R}=\frac{{v}^{\mathrm{2}} \mathrm{2}\sqrt{\left(\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }\right)}\:.\left(\sqrt{\mathrm{1}−\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }}\:\:\right)}{{g}} \\ $$$${R}=\frac{{v}^{\mathrm{2}} \mathrm{2}\:.\left(\sqrt{\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }\right.}\:\:\right)}{{g}} \\ $$$${R}=\frac{{v}^{\mathrm{2}} \mathrm{2}\:.\left(\sqrt{\frac{\mathrm{8}{g}}{{v}^{\mathrm{2}} }\left(\frac{{v}^{\mathrm{2}} −\mathrm{8}{g}}{{v}^{\mathrm{2}} }\right.}\:\:\right)}{{g}} \\ $$$${R}=\frac{\mathrm{2}\sqrt{\mathrm{8}{g}\:}\sqrt{{v}^{\mathrm{2}} −\mathrm{8}{g}}}{{g}} \\ $$$$……. \\ $$A particle is projected with initial speed V at an angle θ to the horizontal.
The maximum height H of the projectile must be less than or equal to the height of the tunnel, which is 4.0 meters.