Menu Close

prove-curve-x-t-a-r-cos-t-a-2-r-2-2ar-cos-t-y-t-r-sin-t-a-2-r-2-2ar-cos-t-0-t-2pi-is-circle-find-center-amp-radius-




Question Number 209131 by mahdipoor last updated on 02/Jul/24
prove :  curve  { ((x(t)=((a+r.cos(t))/(a^2 +r^2 +2ar.cos(t))))),((y(t)=((r.sin(t))/(a^2 +r^2 +2ar.cos(t))))) :}    0≤t≤2π  is circle , find center & radius
prove:curve{x(t)=a+r.cos(t)a2+r2+2ar.cos(t)y(t)=r.sin(t)a2+r2+2ar.cos(t)0t2πiscircle,findcenter&radius
Answered by Frix last updated on 02/Jul/24
 { ((cos t =((a−(a^2 +r^2 )x)/((2ax−1)r)))),((y=±((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))) :}  ⇒  (y−((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))(y+((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))=0  ⇔  (x−(a/(a^2 −r^2 )))^2 +y^2 =((r/(a^2 −r^2 )))^2   Center= (((a/(a^2 −r^2 ))),(0) ) , Radius=(r/(a^2 −r^2 ))
{cost=a(a2+r2)x(2ax1)ry=±r1cos2ta2+r2+2arcost(yr1cos2ta2+r2+2arcost)(y+r1cos2ta2+r2+2arcost)=0(xaa2r2)2+y2=(ra2r2)2Center=(aa2r20),Radius=ra2r2

Leave a Reply

Your email address will not be published. Required fields are marked *