Menu Close

Question-209116




Question Number 209116 by alcohol last updated on 02/Jul/24
Answered by A5T last updated on 02/Jul/24
WLOG, let a≥b≥c  1=(1/a)+(1/b)+(1/c)≤(3/c)⇒c≤3  when c=3;(2/3)=(1/a)+(1/b)≤(2/b)⇒b≤3  b=3⇒a=3; b=2⇒a=6   →←  ⇒(a,b,c)=(3,3,3)  when c=2; (1/2)=(1/a)+(1/b)≤(2/b)⇒b≤4  b=4⇒a=4; b=3⇒a=6⇒(a,b,c)=(4,4,2);(6,3,2)  when c=1; (1/a)+(1/b)=0     X  ⇒(a,b,c)=(3,3,3);(4,4,2);(6,3,2)
$${WLOG},\:{let}\:{a}\geqslant{b}\geqslant{c} \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\leqslant\frac{\mathrm{3}}{{c}}\Rightarrow{c}\leqslant\mathrm{3} \\ $$$${when}\:{c}=\mathrm{3};\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\leqslant\frac{\mathrm{2}}{{b}}\Rightarrow{b}\leqslant\mathrm{3} \\ $$$${b}=\mathrm{3}\Rightarrow{a}=\mathrm{3};\:{b}=\mathrm{2}\Rightarrow{a}=\mathrm{6}\:\:\:\rightarrow\leftarrow \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{3},\mathrm{3}\right) \\ $$$${when}\:{c}=\mathrm{2};\:\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\leqslant\frac{\mathrm{2}}{{b}}\Rightarrow{b}\leqslant\mathrm{4} \\ $$$${b}=\mathrm{4}\Rightarrow{a}=\mathrm{4};\:{b}=\mathrm{3}\Rightarrow{a}=\mathrm{6}\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{4},\mathrm{4},\mathrm{2}\right);\left(\mathrm{6},\mathrm{3},\mathrm{2}\right) \\ $$$${when}\:{c}=\mathrm{1};\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\mathrm{0}\:\:\:\:\:{X} \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{3},\mathrm{3}\right);\left(\mathrm{4},\mathrm{4},\mathrm{2}\right);\left(\mathrm{6},\mathrm{3},\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *