Menu Close

Arrange-in-descending-order-5-2-7-5-13-11-19-17-




Question Number 209234 by Tawa11 last updated on 04/Jul/24
Arrange in descending order:      (√5)  −  (√2),     (√7)  −  (√5) ,   (√(13))  −  (√(11)) ,   (√(19))  −  (√(17))
Arrangeindescendingorder:52,75,1311,1917
Answered by A5T last updated on 04/Jul/24
Same arrangement:  (√5)−(√2)(>(√5)−(√3))>(√7)−(√5)>(√(13))−(√(11))>(√(19))−(√(17))  (√(x+2))−(√x) is decreasing as x^+  increases  (√(x+2))−(√x)>^? (√(x+3))−(√(x+1))  ⇔x+2−x−2(√(x(x+2)))>x+3−x−1−2(√((x+1)(x+3)))  ⇔x(x+2)<(x+1)(x+3) which is true.
Samearrangement:52(>53)>75>1311>1917x+2xisdecreasingasx+increasesx+2x>?x+3x+1x+2x2x(x+2)>x+3x12(x+1)(x+3)x(x+2)<(x+1)(x+3)whichistrue.
Commented by Tawa11 last updated on 05/Jul/24
Thanks sir. I appreciate.
Thankssir.Iappreciate.
Answered by BaliramKumar last updated on 07/Jul/24
(√5)−(√2) = ((((√5)−(√2))((√5)+(√2)))/(((√5)+(√2))))  = (2/(((√5)+(√2))))  ...... (i)  (√7)−(√5) = ((((√7)−(√5))((√7)+(√5)))/(((√7)+(√5))))  = (2/(((√7)+(√5))))  ......(ii)  (√(13))−(√(11)) = ((((√(13))−(√(11)))((√(13))+(√(11))))/(((√(13))+(√(11)))))  = (2/(((√(13))+(√(11))))) ...(iii)  (√(19))−(√(17)) = ((((√(19))−(√(17)))((√(19))+(√(17))))/(((√(19))+(√(17)))))  = (2/(((√(19))+(√(17))))) ....(iv)  (i) > (ii) > (iii) > (iv)
52=(52)(5+2)(5+2)=2(5+2)(i)75=(75)(7+5)(7+5)=2(7+5)(ii)1311=(1311)(13+11)(13+11)=2(13+11)(iii)1917=(1917)(19+17)(19+17)=2(19+17).(iv)(i)>(ii)>(iii)>(iv)

Leave a Reply

Your email address will not be published. Required fields are marked *