Menu Close

Arrange-in-descending-order-5-2-7-5-13-11-19-17-




Question Number 209234 by Tawa11 last updated on 04/Jul/24
Arrange in descending order:      (√5)  −  (√2),     (√7)  −  (√5) ,   (√(13))  −  (√(11)) ,   (√(19))  −  (√(17))
$$\mathrm{Arrange}\:\mathrm{in}\:\mathrm{descending}\:\mathrm{order}: \\ $$$$\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\sqrt{\mathrm{2}},\:\:\:\:\:\sqrt{\mathrm{7}}\:\:−\:\:\sqrt{\mathrm{5}}\:,\:\:\:\sqrt{\mathrm{13}}\:\:−\:\:\sqrt{\mathrm{11}}\:,\:\:\:\sqrt{\mathrm{19}}\:\:−\:\:\sqrt{\mathrm{17}} \\ $$
Answered by A5T last updated on 04/Jul/24
Same arrangement:  (√5)−(√2)(>(√5)−(√3))>(√7)−(√5)>(√(13))−(√(11))>(√(19))−(√(17))  (√(x+2))−(√x) is decreasing as x^+  increases  (√(x+2))−(√x)>^? (√(x+3))−(√(x+1))  ⇔x+2−x−2(√(x(x+2)))>x+3−x−1−2(√((x+1)(x+3)))  ⇔x(x+2)<(x+1)(x+3) which is true.
$${Same}\:{arrangement}: \\ $$$$\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}\left(>\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\right)>\sqrt{\mathrm{7}}−\sqrt{\mathrm{5}}>\sqrt{\mathrm{13}}−\sqrt{\mathrm{11}}>\sqrt{\mathrm{19}}−\sqrt{\mathrm{17}} \\ $$$$\sqrt{{x}+\mathrm{2}}−\sqrt{{x}}\:{is}\:{decreasing}\:{as}\:{x}^{+} \:{increases} \\ $$$$\sqrt{{x}+\mathrm{2}}−\sqrt{{x}}\overset{?} {>}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}} \\ $$$$\Leftrightarrow{x}+\mathrm{2}−{x}−\mathrm{2}\sqrt{{x}\left({x}+\mathrm{2}\right)}>{x}+\mathrm{3}−{x}−\mathrm{1}−\mathrm{2}\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)} \\ $$$$\Leftrightarrow{x}\left({x}+\mathrm{2}\right)<\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)\:{which}\:{is}\:{true}. \\ $$
Commented by Tawa11 last updated on 05/Jul/24
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by BaliramKumar last updated on 07/Jul/24
(√5)−(√2) = ((((√5)−(√2))((√5)+(√2)))/(((√5)+(√2))))  = (2/(((√5)+(√2))))  ...... (i)  (√7)−(√5) = ((((√7)−(√5))((√7)+(√5)))/(((√7)+(√5))))  = (2/(((√7)+(√5))))  ......(ii)  (√(13))−(√(11)) = ((((√(13))−(√(11)))((√(13))+(√(11))))/(((√(13))+(√(11)))))  = (2/(((√(13))+(√(11))))) ...(iii)  (√(19))−(√(17)) = ((((√(19))−(√(17)))((√(19))+(√(17))))/(((√(19))+(√(17)))))  = (2/(((√(19))+(√(17))))) ....(iv)  (i) > (ii) > (iii) > (iv)
$$\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}\:=\:\frac{\left(\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}\right)\left(\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}\right)}{\left(\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}\right)}\:\:=\:\frac{\mathrm{2}}{\left(\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}\right)}\:\:……\:\left(\mathrm{i}\right) \\ $$$$\sqrt{\mathrm{7}}−\sqrt{\mathrm{5}}\:=\:\frac{\left(\sqrt{\mathrm{7}}−\sqrt{\mathrm{5}}\right)\left(\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}\right)}{\left(\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}\right)}\:\:=\:\frac{\mathrm{2}}{\left(\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}\right)}\:\:……\left(\mathrm{ii}\right) \\ $$$$\sqrt{\mathrm{13}}−\sqrt{\mathrm{11}}\:=\:\frac{\left(\sqrt{\mathrm{13}}−\sqrt{\mathrm{11}}\right)\left(\sqrt{\mathrm{13}}+\sqrt{\mathrm{11}}\right)}{\left(\sqrt{\mathrm{13}}+\sqrt{\mathrm{11}}\right)}\:\:=\:\frac{\mathrm{2}}{\left(\sqrt{\mathrm{13}}+\sqrt{\mathrm{11}}\right)}\:…\left(\mathrm{iii}\right) \\ $$$$\sqrt{\mathrm{19}}−\sqrt{\mathrm{17}}\:=\:\frac{\left(\sqrt{\mathrm{19}}−\sqrt{\mathrm{17}}\right)\left(\sqrt{\mathrm{19}}+\sqrt{\mathrm{17}}\right)}{\left(\sqrt{\mathrm{19}}+\sqrt{\mathrm{17}}\right)}\:\:=\:\frac{\mathrm{2}}{\left(\sqrt{\mathrm{19}}+\sqrt{\mathrm{17}}\right)}\:….\left(\mathrm{iv}\right) \\ $$$$\left(\mathrm{i}\right)\:>\:\left(\mathrm{ii}\right)\:>\:\left(\mathrm{iii}\right)\:>\:\left(\mathrm{iv}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *