Menu Close

calculate-I-0-tan-1-x-1-x-2-2-dx-




Question Number 209217 by mnjuly1970 last updated on 04/Jul/24
              calculate :                   I= ∫_(0 ) ^( ∞) (( tan^( −1) (x))/((1 + x^( 2) )^( 2) )) dx = ?
calculate:I=0tan1(x)(1+x2)2dx=?
Answered by Berbere last updated on 04/Jul/24
tan^(−1) (x)=u  ∫_0 ^(π/2) ucos^2 (u)du=∫_0 ^(π/2) u.(((1+cos(2u))/2))  =(1/4).(π^2 /4)+(1/2)[((sin(2u))/2)u]_0 ^(π/2) −(1/4)∫sin(2u)du  =(π^2 /(16))+(1/8)[cos(2u)]_0 ^(π/2) =(π^2 /(16))−(1/4)
tan1(x)=u0π2ucos2(u)du=0π2u.(1+cos(2u)2)=14.π24+12[sin(2u)2u]0π214sin(2u)du=π216+18[cos(2u)]0π2=π21614
Answered by lepuissantcedricjunior last updated on 05/Jul/24
i=∫_0 ^∞ ((arctan(x))/((1+x^2 )^2 ))dx  posons x=tant=>dx=(1+tan^2 t)dt  i=∫_0 ^(𝛑/2) (t/(1+tan^2 t))dt=∫_0 ^(π/2) tcos^2 (t)dt   { ((u=t)),((v′=cos^2 (t))) :}=> { ((u′=1)),((v=(t/2)+((sin2t)/4))) :}  i=[(t^2 /2)+((tsin2t)/4)]_0 ^(𝛑/2) −∫_0 ^(𝛑/2) ((t/2)+((sin2t)/4))dt     =(𝛑^2 /8)−[(t^2 /4)−((cos2t)/8)]_0 ^(𝛑/2)      =(𝛑^2 /8)−(𝛑^2 /(16))−(1/8)−(1/8)=(𝛑^2 /(16))−(1/4)  ⇒i=∫_0 ^∞ ((arctan(x))/((1+x^2 )^2 ))dx=(𝛑^2 /(16))−(1/4)
i=0arctan(x)(1+x2)2dxposonsx=tant=>dx=(1+tan2t)dti=0π/2t1+tan2tdt=0π2tcos2(t)dt{u=tv=cos2(t)=>{u=1v=t2+sin2t4i=[t22+tsin2t4]0π20π2(t2+sin2t4)dt=π28[t24cos2t8]0π2=π28π2161818=π21614i=0arctan(x)(1+x2)2dx=π21614

Leave a Reply

Your email address will not be published. Required fields are marked *