Menu Close

Find-f-x-x-0-dt-t-e-f-t-




Question Number 209246 by Erico last updated on 05/Jul/24
Find f(x)=∫^( x) _( 0) (dt/(t+e^(f(t)) ))
Findf(x)=0xdtt+ef(t)
Answered by mr W last updated on 06/Jul/24
f(x)=∫_0 ^x (dt/(t+e^(f(t)) ))  f′(x)=(1/(x+e^(f(x)) ))  (dy/dx)=(1/(x+e^y ))  (dx/dy)=x+e^y   (dx/dy)−x=e^y   ← D.E. of type y′+p(x)y=q(x)  ⇒x=((∫e^(−y) e^y dy+C)/e^(−y) )=(y+C)e^y   ⇒xe^C =(y+C)e^(y+C)   ⇒y+C=W(xe^C )  ← Lambert W function  or  y=f(x)=W(kx)−ln k  f(0)=W(0)−ln k=0 ⇒ln k=0 ⇒k=1  ⇒f(x)=W(x)
f(x)=0xdtt+ef(t)f(x)=1x+ef(x)dydx=1x+eydxdy=x+eydxdyx=eyD.E.oftypey+p(x)y=q(x)x=eyeydy+Cey=(y+C)eyxeC=(y+C)ey+Cy+C=W(xeC)LambertWfunctionory=f(x)=W(kx)lnkf(0)=W(0)lnk=0lnk=0k=1f(x)=W(x)

Leave a Reply

Your email address will not be published. Required fields are marked *