Menu Close

m-n-N-m-2-and-n-2-p-gt-0-and-q-gt-0-p-q-1-Prove-that-1-q-n-m-1-p-m-n-1-




Question Number 209309 by hardmath last updated on 06/Jul/24
m , n ∈ N  m ≥ 2   and   n ≥ 2  p > 0   and   q > 0  p + q = 1  Prove that:   (1−q^n )^m  + (1−p^m )^n  ≥ 1
$$\mathrm{m}\:,\:\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{m}\:\geqslant\:\mathrm{2}\:\:\:\mathrm{and}\:\:\:\mathrm{n}\:\geqslant\:\mathrm{2} \\ $$$$\mathrm{p}\:>\:\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\:>\:\mathrm{0} \\ $$$$\mathrm{p}\:+\:\mathrm{q}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\left(\mathrm{1}−\mathrm{q}^{\boldsymbol{\mathrm{n}}} \right)^{\boldsymbol{\mathrm{m}}} \:+\:\left(\mathrm{1}−\mathrm{p}^{\boldsymbol{\mathrm{m}}} \right)^{\boldsymbol{\mathrm{n}}} \:\geqslant\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *