Question Number 209404 by Tawa11 last updated on 09/Jul/24
Answered by mr W last updated on 09/Jul/24
$${s}=\mathrm{4}{t}+{at}^{\mathrm{2}} +{bt}^{\mathrm{3}} \\ $$$${v}=\frac{{ds}}{{dt}}=\mathrm{4}+\mathrm{2}{at}+\mathrm{3}{bt}^{\mathrm{2}} \\ $$$${a}=\frac{{dv}}{{dt}}=\mathrm{2}{a}+\mathrm{6}{bt} \\ $$$${at}\:{v}_{{max}} :\:{a}=\mathrm{0}=\mathrm{2}{a}+\mathrm{6}{bt}\:\Rightarrow{t}=−\frac{{a}}{\mathrm{3}{b}}=\mathrm{6}\:\Rightarrow{a}=−\mathrm{18}{b} \\ $$$${s}\left(\mathrm{6}\right)=\mathrm{4}×\mathrm{6}+{a}×\mathrm{6}^{\mathrm{2}} +{b}×\mathrm{6}^{\mathrm{3}} =\mathrm{48} \\ $$$$\Rightarrow\mathrm{3}{a}+\mathrm{18}{b}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{3}{a}−{a}=\mathrm{2}\:\Rightarrow{a}=\mathrm{1}\:\Rightarrow{b}=−\frac{\mathrm{1}}{\mathrm{18}} \\ $$$${v}_{{max}} =\mathrm{4}+\mathrm{2}×\mathrm{6}−\frac{\mathrm{6}^{\mathrm{2}} }{\mathrm{6}}=\mathrm{10}\:{yd}/{s} \\ $$$${s}=\mathrm{4}{t}+{t}^{\mathrm{2}} −\frac{{t}^{\mathrm{3}} }{\mathrm{18}} \\ $$$$\frac{{ds}}{{dt}}=\mathrm{4}+\mathrm{2}{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{6}}=\mathrm{0}\:\Rightarrow{t}=\mathrm{6}\left(\mathrm{1}+\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\right) \\ $$$${s}_{{max}} =\mathrm{4}{t}+{t}^{\mathrm{2}} −\frac{{t}}{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{4}\right)=\frac{{t}^{\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{8}{t}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:=\mathrm{2}\left(\mathrm{2}{t}+\mathrm{4}\right)+\frac{\mathrm{8}{t}}{\mathrm{3}}=\frac{\mathrm{20}{t}}{\mathrm{3}}+\mathrm{8} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{20}}{\mathrm{3}}×\mathrm{6}\left(\mathrm{1}+\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\right)+\mathrm{8} \\ $$$$\:\:\:\:\:=\mathrm{48}+\mathrm{40}\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\approx\mathrm{99}.\mathrm{6}\:{yd}<\mathrm{100}\:{yd} \\ $$$${that}\:{means}\:{the}\:{boy}\:{can}\:{never}\:{reach} \\ $$$$\mathrm{100}\:{yards}. \\ $$$$\Rightarrow{question}\:{is}\:{wrong}\:{or}\:{question}\:{is} \\ $$$${not}\:{clear}\:{enough}\:{to}\:{be}\:{understood}. \\ $$
Commented by Tawa11 last updated on 09/Jul/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by mr W last updated on 09/Jul/24
$${a}\:{strange}\:{boy}!\:{he}\:{runs}\:{forwards}\:{at} \\ $$$${first}.\:{when}\:{he}\:{has}\:{run}\:\mathrm{99}.\mathrm{6}\:{yd},\:{he} \\ $$$${begins}\:{to}\:{run}\:{backwards}. \\ $$
Commented by Tawa11 last updated on 09/Jul/24
$$\mathrm{Hahahahahaha} \\ $$
Commented by A5T last updated on 09/Jul/24
$${s}=\mathrm{10}{t}\:{after}\:\mathrm{6}{s};\: \\ $$$${s}=\mathrm{4}{t}+{t}^{\mathrm{2}} −\frac{{t}^{\mathrm{3}} }{\mathrm{18}}\:{was}\:{upto}\:\mathrm{6}{s}\:{and}\:{not}\:{after}. \\ $$
Commented by mr W last updated on 09/Jul/24
$${thanks}.\:{you}\:{are}\:{right}.\:{it}\:{makes}\:{sinse}\:{too}. \\ $$$${but}\:{i}\:{still}\:{think}\:{the}\:{question}\:{is}\:{not} \\ $$$${clear}\:{enough}. \\ $$
Answered by A5T last updated on 09/Jul/24
$${s}={f}\left({t}\right)=\mathrm{4}{t}+{at}^{\mathrm{2}} +{bt}^{\mathrm{3}} \\ $$$${f}\left(\mathrm{6}\right)=\mathrm{48}\Rightarrow\mathrm{3}{a}+\mathrm{18}{b}=\mathrm{2}…\left({i}\right) \\ $$$${v}=\frac{{ds}}{{dt}}=\mathrm{4}+\mathrm{2}{at}+\mathrm{3}{bt}^{\mathrm{2}} \:{maximum}\:{when}\:{t}=\mathrm{6} \\ $$$${v}=\mathrm{4}+\mathrm{12}{a}+\mathrm{108}{b}\:{at}\:{maximum}\:{point}…\left({ii}\right) \\ $$$$\frac{{dv}}{{dt}}\overset{?} {=}\mathrm{0}\Rightarrow\mathrm{2}{a}+\mathrm{6}{bt}=\mathrm{0}\Rightarrow\mathrm{2}{a}+\mathrm{36}{b}=\mathrm{0}\Rightarrow{a}=−\mathrm{18}{b} \\ $$$$\left({i}\right)\Rightarrow−\mathrm{2}×\mathrm{18}{b}=\mathrm{2}\Rightarrow{b}=\frac{−\mathrm{1}}{\mathrm{18}}\Rightarrow{a}=\mathrm{1} \\ $$$$\left({ii}\right)\Rightarrow{maximum}\:{speed}=\mathrm{16}−\mathrm{6}=\mathrm{10}{yd}/{s} \\ $$$${After}\:\mathrm{6}{s};\:{s}=\mathrm{10}×{t}\Rightarrow{t}=\frac{{s}}{\mathrm{10}}=\frac{\mathrm{100}−\mathrm{48}}{\mathrm{10}}=\mathrm{5}.\mathrm{2}{s} \\ $$$${The}\:{time}\:{taken}\:{to}\:{complete}\:{the}\:{rest}\:{is}\:\mathrm{5}.\mathrm{2}{sec} \\ $$$$\Rightarrow{Total}\:{time}\:{taken}=\mathrm{6}{s}+\mathrm{5}.\mathrm{2}{s}=\mathrm{11}.\mathrm{2}{seconds} \\ $$
Commented by Tawa11 last updated on 09/Jul/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$