Menu Close

Question-209424




Question Number 209424 by Tawa11 last updated on 09/Jul/24
Commented by Tawa11 last updated on 09/Jul/24
In this kind of probability, is the formular.  p(x = r)  =  ^n C_r  p^r  q^(n − r)   or  p(x = r)  =  ^n C_r  q^r  p^(n − r)   ?????
$$\mathrm{In}\:\mathrm{this}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{probability},\:\mathrm{is}\:\mathrm{the}\:\mathrm{formular}. \\ $$$$\mathrm{p}\left(\mathrm{x}\:=\:\mathrm{r}\right)\:\:=\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \:\mathrm{p}^{\mathrm{r}} \:\mathrm{q}^{\mathrm{n}\:−\:\mathrm{r}} \\ $$$$\mathrm{or} \\ $$$$\mathrm{p}\left(\mathrm{x}\:=\:\mathrm{r}\right)\:\:=\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \:\mathrm{q}^{\mathrm{r}} \:\mathrm{p}^{\mathrm{n}\:−\:\mathrm{r}} \\ $$$$????? \\ $$
Commented by Tawa11 last updated on 09/Jul/24
Where   p  =  success  and  q  =  failure
$$\mathrm{Where}\:\:\:\mathrm{p}\:\:=\:\:\mathrm{success}\:\:\mathrm{and}\:\:\mathrm{q}\:\:=\:\:\mathrm{failure} \\ $$
Answered by mr W last updated on 09/Jul/24
(a)  p=Σ_(r=2) ^(12) C_r ^(12) ×0.3^r ×0.7^(12−r) =0.915  (b)  p=C_6 ^(12) ×0.3^6 ×0.7^6 =0.079  (c)  p=Σ_(r=0) ^2 C_r ^(12) ×0.3^r ×0.7^(12−r) =0.253
$$\left({a}\right) \\ $$$${p}=\underset{{r}=\mathrm{2}} {\overset{\mathrm{12}} {\sum}}{C}_{{r}} ^{\mathrm{12}} ×\mathrm{0}.\mathrm{3}^{{r}} ×\mathrm{0}.\mathrm{7}^{\mathrm{12}−{r}} =\mathrm{0}.\mathrm{915} \\ $$$$\left({b}\right) \\ $$$${p}={C}_{\mathrm{6}} ^{\mathrm{12}} ×\mathrm{0}.\mathrm{3}^{\mathrm{6}} ×\mathrm{0}.\mathrm{7}^{\mathrm{6}} =\mathrm{0}.\mathrm{079} \\ $$$$\left({c}\right) \\ $$$${p}=\underset{{r}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}{C}_{{r}} ^{\mathrm{12}} ×\mathrm{0}.\mathrm{3}^{{r}} ×\mathrm{0}.\mathrm{7}^{\mathrm{12}−{r}} =\mathrm{0}.\mathrm{253} \\ $$
Commented by Tawa11 last updated on 09/Jul/24
Thanks sir. I really appreciate sir.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 10/Jul/24
Sir please, any luck for me on Q209430, thanks sir.
$$\mathrm{Sir}\:\mathrm{please},\:\mathrm{any}\:\mathrm{luck}\:\mathrm{for}\:\mathrm{me}\:\mathrm{on}\:\mathrm{Q209430},\:\mathrm{thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 10/Jul/24
i have given the answers. but i don′t  think it may really help you.
$${i}\:{have}\:{given}\:{the}\:{answers}.\:{but}\:{i}\:{don}'{t} \\ $$$${think}\:{it}\:{may}\:{really}\:{help}\:{you}.\: \\ $$
Commented by Tawa11 last updated on 10/Jul/24
Though, I understand the workings sir,  But I don′t understand the concept.
$$\mathrm{Though},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{sir}, \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{concept}. \\ $$
Commented by mr W last updated on 11/Jul/24
just filling in formula without  understanding makes little sense.  the theme is much more complex  than the simple motion of a  projectile in vertical direction.
$${just}\:{filling}\:{in}\:{formula}\:{without} \\ $$$${understanding}\:{makes}\:{little}\:{sense}. \\ $$$${the}\:{theme}\:{is}\:{much}\:{more}\:{complex} \\ $$$${than}\:{the}\:{simple}\:{motion}\:{of}\:{a} \\ $$$${projectile}\:{in}\:{vertical}\:{direction}. \\ $$
Commented by Tawa11 last updated on 11/Jul/24
Wow.  Tell me topic I can learn this more  sir, or link or book. I will study it.
$$\mathrm{Wow}. \\ $$$$\mathrm{Tell}\:\mathrm{me}\:\mathrm{topic}\:\mathrm{I}\:\mathrm{can}\:\mathrm{learn}\:\mathrm{this}\:\mathrm{more} \\ $$$$\mathrm{sir},\:\mathrm{or}\:\mathrm{link}\:\mathrm{or}\:\mathrm{book}.\:\mathrm{I}\:\mathrm{will}\:\mathrm{study}\:\mathrm{it}. \\ $$
Commented by mr W last updated on 11/Jul/24
i don′t mean this question, i mean  Q209430. it′s about   forced damped harmonic oscillator
$${i}\:{don}'{t}\:{mean}\:{this}\:{question},\:{i}\:{mean} \\ $$$${Q}\mathrm{209430}.\:{it}'{s}\:{about}\: \\ $$forced damped harmonic oscillator

Leave a Reply

Your email address will not be published. Required fields are marked *