Menu Close

Question-209456




Question Number 209456 by peter frank last updated on 10/Jul/24
Answered by Ghisom last updated on 10/Jul/24
c=cos α     s=sin α     t=tan α =(s/c)  c=(√(1−s^2 ))=(1/( (√(t^2 +1))))  s=(√(1−c^2 ))=(t/( (√(t^2 +1))))  t=((√(1−c^2 ))/c)=(s/( (√(1−s^2 ))))  should be easy
$${c}=\mathrm{cos}\:\alpha\:\:\:\:\:{s}=\mathrm{sin}\:\alpha\:\:\:\:\:{t}=\mathrm{tan}\:\alpha\:=\frac{{s}}{{c}} \\ $$$${c}=\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }=\frac{\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${s}=\sqrt{\mathrm{1}−{c}^{\mathrm{2}} }=\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${t}=\frac{\sqrt{\mathrm{1}−{c}^{\mathrm{2}} }}{{c}}=\frac{{s}}{\:\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{easy} \\ $$
Commented by peter frank last updated on 11/Jul/24
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by Spillover last updated on 10/Jul/24
  Since (A+B)=90°    Then    TanA=opposite/adjacent    Tan A=√s/r    Also    Tan B=opp/adj               =r/√s   By considering angle B    adjacent=√s    Opposite =r    from a²+b²=c²  r²+(√s)²=c²  c²=r²+s  c=√(r²+s)    Hyp=√(r²+s)    Now     Cos B=adj/hyp    Cos B=√s/√(r²+s)    We know that      √x/√y=√(x/y)    Hence    √s/√(r²+s)=√(s/r²+s)      Therefore :CosB=√(s/r²+s)
$$ \\ $$Since (A+B)=90°

Then

TanA=opposite/adjacent

Tan A=√s/r

Also

Tan B=opp/adj

=r/√s
By considering angle B

adjacent=√s

Opposite =r

from a²+b²=c²
r²+(√s)²=c²
c²=r²+s
c=√(r²+s)

Hyp=√(r²+s)

Now

Cos B=adj/hyp

Cos B=√s/√(r²+s)

We know that

√x/√y=√(x/y)

Hence

√s/√(r²+s)=√(s/r²+s)

Therefore :CosB=√(s/r²+s)

Commented by Spillover last updated on 10/Jul/24

Leave a Reply

Your email address will not be published. Required fields are marked *