Menu Close

find-the-integral-dx-x-4-a-4-by-complex-number-




Question Number 209521 by mokys last updated on 12/Jul/24
find the integral ∫ (dx/(x^4 +a^4 )) by complex number ?
findtheintegraldxx4+a4bycomplexnumber?
Answered by mathmax last updated on 14/Jul/24
I=∫ (dx/(x^4 −i^2 a^4 ))=∫(dx/((x^2 −ia^2 )(x^2 +ia^2 )))  =(1/(2ia^2 ))∫((1/(x^2 −ia^2 ))−(1/(x^2 +ia^2 )))dx  =(1/(2ia^2 )){∫(dx/(x^2 −ia^2 ))−∫(dx/(x^2 +ia^2 ))}dx  I_1 =∫  (dx/((x−(√i)a)(x+(√i)a)))  =(1/(2(√i)a))∫((1/(x−(√i)a))−(1/(x+(√i)a))))dx  =(1/(2(√i)a))ln(((x−(√i)a)/(x+(√i)a))) +c_1   I_2 =∫ (dx/(x^2 +ia^2 ))=∫(dx/(x^2 −(−i)a^2 ))  =(1/(2(√(−i))a))∫((1/(x−(√(−i))a))−(1/(x+(√(−i))a)))dx  =(1/(2(√(−i))a))ln(((x−(√(−i))a)/(x+(√(−i))a)))+c_2   I =(1/(2ia^2 ))×(1/(2(√i)a))ln(((x−(√i)a)/(x+(√i)a)))  −(1/(2ia^2 ))×(1/(2(√(−i))a))ln(((x−(√(−i))a)/(x+(√(−i))a)))+C  =(1/(4a^3 i(√i)))ln(((x−(√i)a)/(x+(√i)a)))−(1/(4a^3 i(√(−i))))ln(((x−(√(−i))a)/(x+(√(−i))a)))+C
I=dxx4i2a4=dx(x2ia2)(x2+ia2)=12ia2(1x2ia21x2+ia2)dx=12ia2{dxx2ia2dxx2+ia2}dxI1=dx(xia)(x+ia)=12ia(1xia1x+ia))dx=12ialn(xiax+ia)+c1I2=dxx2+ia2=dxx2(i)a2=12ia(1xia1x+ia)dx=12ialn(xiax+ia)+c2I=12ia2×12ialn(xiax+ia)12ia2×12ialn(xiax+ia)+C=14a3iiln(xiax+ia)14a3iiln(xiax+ia)+C

Leave a Reply

Your email address will not be published. Required fields are marked *