Menu Close

L-sing-dy-dx-L-laplas-transfer-




Question Number 209545 by mahdipoor last updated on 13/Jul/24
L(sing((dy/dx)))=?  L()  ≡  laplas transfer
$${L}\left({sing}\left(\frac{{dy}}{{dx}}\right)\right)=? \\ $$$${L}\left(\right)\:\:\equiv\:\:{laplas}\:{transfer} \\ $$
Answered by Berbere last updated on 15/Jul/24
sing((dy/dx)) what de you mean L( sin (y′(t))..?
$${sing}\left(\frac{{dy}}{{dx}}\right)\:{what}\:{de}\:{you}\:{mean}\:\mathcal{L}\left(\:\mathrm{sin}\:\left({y}'\left({t}\right)\right)..?\right. \\ $$
Commented by mahdipoor last updated on 15/Jul/24
sing(m)= { ((0   if   m=0)),((1   if   m>0)),((−1   if   m<0)) :}
$${sing}\left({m}\right)=\begin{cases}{\mathrm{0}\:\:\:{if}\:\:\:{m}=\mathrm{0}}\\{\mathrm{1}\:\:\:{if}\:\:\:{m}>\mathrm{0}}\\{−\mathrm{1}\:\:\:{if}\:\:\:{m}<\mathrm{0}}\end{cases} \\ $$
Commented by York12 last updated on 08/Nov/24
Signum function
$$\mathrm{Signum}\:\mathrm{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *