Menu Close

Given-2-4-ax-n-1-dx-58-0-2-ax-n-1-dx-10-find-the-value-of-a-and-n-




Question Number 209557 by Spillover last updated on 14/Jul/24
Given    ∫_2 ^4 (ax^n +1)dx=58     ∫_0 ^2 (ax^n +1)dx=10  find the value of  a   and  n
Given24(axn+1)dx=5802(axn+1)dx=10findthevalueofaandn
Answered by mr W last updated on 14/Jul/24
∫_0 ^2 (ax^n +1)dx=[((ax^(n+1) )/(n+1))+x]_0 ^2 =((a2^(n+1) )/(n+1))+2=10  ⇒((a2^(n+1) )/(n+1))=8   ...(i)  ∫_0 ^4 (ax^n +1)dx=((a4^(n+1) )/(n+1))+4=10+58=68  ⇒((a4^(n+1) )/(n+1))=64   ...(ii)  (ii)/(i): ((4/2))^(n+1) =8 ⇒n=2 ✓  ⇒a=((8×3)/2^3 )=3 ✓
02(axn+1)dx=[axn+1n+1+x]02=a2n+1n+1+2=10a2n+1n+1=8(i)04(axn+1)dx=a4n+1n+1+4=10+58=68a4n+1n+1=64(ii)(ii)/(i):(42)n+1=8n=2a=8×323=3
Commented by Spillover last updated on 14/Jul/24
thank you
thankyou
Answered by lepuissantcedricjunior last updated on 16/Jul/24
∫_2 ^4 (ax^n +1)dx=58  ∫_0 ^2 (ax^n +1)dx=10  => { ((∫_2 ^4 (ax^n +1)dx)),((∫_0 ^2 (ax^n +1)dx)) :}=> { ((=[(a/(1+n))x^(n+1) +x]_2 ^4 )),((=[(a/(n+1))x^(n+1) +x]_0 ^2 )) :}=> { ((=((2^(2n+2) a)/(1+n))−((2^(n+1) a)/(n+1))+2)),((=((2^(n+1) a)/(n+1))+2)) :}  => { ((((2^(n+1) a(2^(n+1) −1))/(n+1))=56(1))),((((2^(n+1) a)/(n+1))=8(2)remplacons dans (1))) :}  =>8(2^(n+1) −1)=56=>2^(n+1) =8=2^3   =>n+1=3=>n=2  deplus ((2^(n+1) a)/(n+1))=8=>(8/3)a=8=>a=3  d′ou′ ⇒{(n;a)}={(2;3)}  ............le puissant cedric junior........
24(axn+1)dx=5802(axn+1)dx=10=>{24(axn+1)dx02(axn+1)dx=>{=[a1+nxn+1+x]24=[an+1xn+1+x]02=>{=22n+2a1+n2n+1an+1+2=2n+1an+1+2=>{2n+1a(2n+11)n+1=56(1)2n+1an+1=8(2)remplaconsdans(1)=>8(2n+11)=56=>2n+1=8=23=>n+1=3=>n=2deplus2n+1an+1=8=>83a=8=>a=3dou{(n;a)}={(2;3)}lepuissantcedricjunior..
Commented by Spillover last updated on 30/Jul/24
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *