Question Number 209557 by Spillover last updated on 14/Jul/24

Answered by mr W last updated on 14/Jul/24
![∫_0 ^2 (ax^n +1)dx=[((ax^(n+1) )/(n+1))+x]_0 ^2 =((a2^(n+1) )/(n+1))+2=10 ⇒((a2^(n+1) )/(n+1))=8 ...(i) ∫_0 ^4 (ax^n +1)dx=((a4^(n+1) )/(n+1))+4=10+58=68 ⇒((a4^(n+1) )/(n+1))=64 ...(ii) (ii)/(i): ((4/2))^(n+1) =8 ⇒n=2 ✓ ⇒a=((8×3)/2^3 )=3 ✓](https://www.tinkutara.com/question/Q209558.png)
Commented by Spillover last updated on 14/Jul/24

Answered by lepuissantcedricjunior last updated on 16/Jul/24
![∫_2 ^4 (ax^n +1)dx=58 ∫_0 ^2 (ax^n +1)dx=10 => { ((∫_2 ^4 (ax^n +1)dx)),((∫_0 ^2 (ax^n +1)dx)) :}=> { ((=[(a/(1+n))x^(n+1) +x]_2 ^4 )),((=[(a/(n+1))x^(n+1) +x]_0 ^2 )) :}=> { ((=((2^(2n+2) a)/(1+n))−((2^(n+1) a)/(n+1))+2)),((=((2^(n+1) a)/(n+1))+2)) :} => { ((((2^(n+1) a(2^(n+1) −1))/(n+1))=56(1))),((((2^(n+1) a)/(n+1))=8(2)remplacons dans (1))) :} =>8(2^(n+1) −1)=56=>2^(n+1) =8=2^3 =>n+1=3=>n=2 deplus ((2^(n+1) a)/(n+1))=8=>(8/3)a=8=>a=3 d′ou′ ⇒{(n;a)}={(2;3)} ............le puissant cedric junior........](https://www.tinkutara.com/question/Q209615.png)
Commented by Spillover last updated on 30/Jul/24
