Menu Close

In-the-triangle-ABC-cos-B-C-1-3-Show-that-1-3cos-B-C-6sinBcosC-tanC-




Question Number 209560 by MM42 last updated on 15/Jul/24
In the triangle ABC ; cos(B−C)=(1/3)  Show that :  ((1−3cos(B+C))/(6sinBcosC))=tanC
InthetriangleABC;cos(BC)=13Showthat:13cos(B+C)6sinBcosC=tanC
Answered by Spillover last updated on 14/Jul/24
  ((1−3×(1/3))/(6sinBcosC))=tanC  0=tan C  ......  something wrong
13×136sinBcosC=tanC0=tanCsomethingwrong
Commented by MM42 last updated on 15/Jul/24
corrected
corrected
Answered by Berbere last updated on 15/Jul/24
cos(B−C)=(1/3) Without lost of Generality B>C  B−C=arcos((1/3))  A+B+C=π  B+C=arcos((1/3))+2C  sin(B)cos(c)=sin(c+cos^(−1) ((1/3))).cos(c)  ((1/3)sin(c)+((2(√2))/3)cos(c))cosC)  1−3cos(cos^(−1) ((1/3))+2c)=1−cos(2c)+3.((2(√2))/3)sin(2c)  =2sin^2 (c)−4(√2)sin(c)cos(c)=sin(c)(2sin(c)+4(√2)cos(c))  ((1−3cos(B+C)))/(6sin(B)cos(C)))=((sin(C)(2sin(C)+4(√2)cos(C)))/((2sin(C)+4(√2)cos(C))cos(C)))=tan (C)
cos(BC)=13WithoutlostofGeneralityB>CBC=arcos(13)A+B+C=πB+C=arcos(13)+2Csin(B)cos(c)=sin(c+cos1(13)).cos(c)(13sin(c)+223cos(c))cosC)13cos(cos1(13)+2c)=1cos(2c)+3.223sin(2c)=2sin2(c)42sin(c)cos(c)=sin(c)(2sin(c)+42cos(c))13cos(B+C))6sin(B)cos(C)=sin(C)(2sin(C)+42cos(C))(2sin(C)+42cos(C))cos(C)=tan(C)
Commented by MM42 last updated on 15/Jul/24
 ⋛
Answered by MM42 last updated on 15/Jul/24
((3((1/3)−cos(B+C)))/(6sinBcosC))=((3(cos(B−C)−cos(B+C)))/(6sinBcosC))  =((3[(−2)sin(((B−C−B−C))/2))sin(((B−C+B+C)/2)))/(6sinBcosC))  =((6sinBsinc)/(6sinBcosC))=tanC ✓
3(13cos(B+C))6sinBcosC=3(cos(BC)cos(B+C))6sinBcosC=3[(2)sin(BCBC)2)sin(BC+B+C2)6sinBcosC=6sinBsinc6sinBcosC=tanC

Leave a Reply

Your email address will not be published. Required fields are marked *