Menu Close

I-0-0-1-1-x-2-y-2-x-2-y-2-dxdy-using-polar-system-




Question Number 209624 by mnjuly1970 last updated on 16/Jul/24
    I=∫_0 ^( ∞) ∫_0 ^( ∞)  (( 1)/(1+ x^2  +y^2  +x^2 y^2 )) dxdy=?   using    polar  system...
$$ \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\frac{\:\mathrm{1}}{\mathrm{1}+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} {y}^{\mathrm{2}} }\:{dxdy}=? \\ $$$$\:{using}\:\:\:\:{polar}\:\:{system}… \\ $$
Answered by mr W last updated on 16/Jul/24
=∫_0 ^∞ ∫_0 ^∞ (1/((1+x^2 )(1+y^2 )))dxdy  =[∫_0 ^∞ (1/(1+x^2 ))dx]^2   =([tan^(−1) x]_0 ^∞ )^2   =((π/2))^2 =(π^2 /4)
$$=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}{dxdy} \\ $$$$=\left[\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right]^{\mathrm{2}} \\ $$$$=\left(\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\infty} \right)^{\mathrm{2}} \\ $$$$=\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *