Question Number 209630 by otchereabdullai@gmail.com last updated on 16/Jul/24
$$\:\:{If}\:{A}\:\:{varies}\:{as}\:{r}^{\mathrm{2}} \:{and}\:{V}\:\:{varies}\:{as}\:{r}^{\mathrm{3}} \\ $$$$\:{find}\:{percentage}\:{increase}\:{in}\:{A}\:{and}\:{V} \\ $$$$\:{if}\:\:{r}\:{is}\:{increased}\:{by}\:\mathrm{20\%} \\ $$
Answered by som(math1967) last updated on 17/Jul/24
$$\:{A}\propto{r}^{\mathrm{2}} \:\Rightarrow{A}={kr}^{\mathrm{2}} \:\:\left[{k}\:{variation}\:{constant}\right] \\ $$$$\:{A}_{{increase}} ={k}\left(\mathrm{1}.\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{1}.\mathrm{44}{kr}^{\mathrm{2}} \\ $$$$\:\%\:{Increase}\:{in}\:{A}=\frac{\mathrm{1}.\mathrm{44}{kr}^{\mathrm{2}} −{kr}^{\mathrm{2}} }{{kr}^{\mathrm{2}} }×\mathrm{100} \\ $$$$\:\:=\:\frac{.\mathrm{44}{kr}^{\mathrm{2}} }{{kr}^{\mathrm{2}} }×\mathrm{100}=\mathrm{44\%} \\ $$$$\:{V}\propto{r}^{\mathrm{3}} \Rightarrow{V}={Kr}^{\mathrm{3}} \:\left[{K}\:{variation}\:{constant}\right] \\ $$$$\:{V}_{{increase}} ={K}×\left(\mathrm{1}.\mathrm{2}{r}\right)^{\mathrm{3}} ={K}×\mathrm{1}.\mathrm{728}{r}^{\mathrm{3}} \\ $$$$\:\%\:{Increase}=\frac{\mathrm{1}.\mathrm{728}{Kr}^{\mathrm{3}} −{Kr}^{\mathrm{3}} }{{Kr}^{\mathrm{3}} }×\mathrm{100} \\ $$$$\:\:\:\:\:=\:\:\:\mathrm{72}.\mathrm{8\%} \\ $$$$ \\ $$
Commented by otchereabdullai@gmail.com last updated on 17/Jul/24
$${thank}\:{you}\:{sir}! \\ $$