Question Number 209687 by uuuuu last updated on 18/Jul/24
Answered by lepuissantcedricjunior last updated on 18/Jul/24
$$\boldsymbol{{k}}=\int\frac{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{si}}\overset{\mathrm{4}} {\boldsymbol{{n}x}}+\boldsymbol{{co}}\overset{\mathrm{2}} {\boldsymbol{{s}x}}}\boldsymbol{{dx}} \\ $$$$\:\:=\int\frac{\mathrm{2}\boldsymbol{{sinxcosx}}}{\boldsymbol{{co}}\overset{\mathrm{4}} {\boldsymbol{{s}x}}\left(\mathrm{1}+\boldsymbol{{ta}}\overset{\mathrm{4}} {\boldsymbol{{n}x}}\right)}\boldsymbol{{dx}} \\ $$$$\:\:=\int\frac{\mathrm{2}\boldsymbol{{sinx}}}{\boldsymbol{{co}}\overset{\mathrm{3}} {\boldsymbol{{s}x}}}×\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{ta}}\overset{\mathrm{4}} {\boldsymbol{{n}x}}}\boldsymbol{{dx}} \\ $$$$=>\boldsymbol{{k}}=\boldsymbol{{arctan}}\left(\boldsymbol{{ta}}\overset{\mathrm{2}} {\boldsymbol{{n}x}}\right)+\boldsymbol{{k}} \\ $$
Answered by mr W last updated on 19/Jul/24
$$=\int\frac{\mathrm{sin}\:\mathrm{2}{x}}{\left(\mathrm{sin}^{\mathrm{2}} \:{x}+\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} −\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}}{dx} \\ $$$$=\int\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}−\frac{\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}}{\mathrm{2}}}{dx} \\ $$$$=\int\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}}{dx} \\ $$$$=−\int\frac{{d}\left(\mathrm{cos}\:\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}{x}}=−\int\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=−\mathrm{tan}^{−\mathrm{1}} {u}+{C} \\ $$$$=−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{2}{x}\right)+{C} \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}^{\mathrm{2}} \:{x}\right)+{C} \\ $$
Answered by mathmax last updated on 19/Jul/24
$${I}=\int\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}\:\Rightarrow{I}=\int\frac{{sin}\left(\mathrm{2}{x}\right)}{\left({sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} −\mathrm{2}{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{dx} \\ $$$$=\int\:\frac{\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}−{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{dx}\:\:\:\:\:\left(\mathrm{2}{x}={t}\right) \\ $$$$=\int\:\:\frac{{sint}}{\mathrm{2}−{sin}^{\mathrm{2}} {t}}{dt}\:=\int\frac{{sint}}{\left(\sqrt{\mathrm{2}}−{sint}\right)\left(\sqrt{\mathrm{2}}+{sint}\right)}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}−{sint}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+{sint}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:{I}_{\mathrm{1}} −{I}_{\mathrm{2}} \right\} \\ $$$${I}_{\mathrm{1}} =_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={y}} \:\:\int\:\:\:\:\frac{\mathrm{2}{dy}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\sqrt{\mathrm{2}}−\frac{\mathrm{2}{y}}{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$$$=\int\:\:\:\:\frac{\mathrm{2}{dy}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}{y}^{\mathrm{2}} −\mathrm{2}{y}}=\sqrt{\mathrm{2}}\int\frac{{dy}}{{y}^{\mathrm{2}} −\sqrt{\mathrm{2}}{y}+\mathrm{1}} \\ $$$$\Delta=\mathrm{2}−\mathrm{1}=\mathrm{1}\:\Rightarrow{y}_{\mathrm{1}} =\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}} \\ $$$${et}\:{y}_{\mathrm{2}} =\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}\:\Rightarrow{I}_{\mathrm{1}} =\sqrt{\mathrm{2}}\int\left(\frac{\mathrm{1}}{{y}−{y}_{\mathrm{1}} }−\frac{\mathrm{1}}{{y}−{y}_{\mathrm{2}} }\right){dy} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid\frac{{y}−{y}_{\mathrm{1}} }{{y}−{y}_{\mathrm{2}} }\mid+{c}_{\mathrm{1}} =\sqrt{\mathrm{2}}{ln}\mid\frac{{tanx}−\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}}{{tanx}−\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}}\mid+{c}_{\mathrm{1}} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid\frac{\mathrm{2}{tanx}−\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}{tanx}−\sqrt{\mathrm{2}}+\mathrm{1}}\mid+{c}_{\mathrm{1}} \\ $$$${I}_{\mathrm{2}} =\int\:\:\frac{{dt}}{\:\sqrt{\mathrm{2}}+{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={y}} \int\:\:\:\:\frac{\mathrm{2}{dy}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\sqrt{\mathrm{2}}+\frac{\mathrm{2}{y}}{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$$$=\int\:\:\frac{\mathrm{2}{dy}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}{y}^{\mathrm{2}} +\mathrm{2}{y}}=\sqrt{\mathrm{2}}\int\frac{{dy}}{{y}^{\mathrm{2}} +\sqrt{\mathrm{2}}{y}+\mathrm{1}} \\ $$$${y}_{\mathrm{1}} =\frac{−\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}\:{and}\:{y}_{\mathrm{2}} =\frac{−\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} =\sqrt{\mathrm{2}}\int\left(\frac{\mathrm{1}}{{y}−{y}_{\mathrm{1}} }−\frac{\mathrm{1}}{{y}−{y}_{\mathrm{2}} }\right){dy} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid\frac{{y}−{y}_{\mathrm{1}} }{{y}−{y}_{\mathrm{2}} }\mid\:+{c}_{\mathrm{2}} =\sqrt{\mathrm{2}}{ln}\mid\frac{{tanx}+\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}}{{tanx}+\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}}\mid+{c}_{\mathrm{2}} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid\frac{\mathrm{2}{tanx}+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}{tanx}+\sqrt{\mathrm{2}}+\mathrm{1}}\mid\:+{c}_{\mathrm{2}} \:\Rightarrow \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{{I}_{\mathrm{1}} −{I}_{\mathrm{2}} \right\}=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\mid\frac{\mathrm{2}{tanx}−\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}{tanx}−\sqrt{\mathrm{2}}+\mathrm{1}}\mid\right. \\ $$$$−{ln}\mid\frac{\mathrm{2}{tanx}+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}{tanx}+\sqrt{\mathrm{2}}+\mathrm{1}}\mid\:+{c} \\ $$$$ \\ $$$$ \\ $$