Menu Close

a-b-C-ab-b-0-f-z-az-b-such-that-f-M-M-1-let-z-A-z-and-z-A-z-and-f-A-A-show-that-2Re-b-z-bb-A-is-the-set-of-invariant-points-and-describes




Question Number 209707 by alcohol last updated on 19/Jul/24
a,b ∈C : ab^−  + b = 0 f : z′ = az^−  + b                 such that f(M) = M′  1. let z_A  = z and z_(A′)  = z′ and f(A) = A  show that 2Re(b^− z) = bb^−   (A is the set of invariant points and   describes a line (△) )  2. Deduce that (△) is a line with   gradient u^( →)  with affix z_u^→   = ib  3. show that (z_(MM ′) /z_u ) = ((bb^−  − 2Re(bz^− ))/(ibb^− ))  4. show that 2Re(b^− z_0 ) = bb^_  where   z_0  = ((z + z ′)/2)  5. Deduce that for M ∉ (△) , M is   a perpendicular bisector of [MM ′]
$${a},{b}\:\in\mathbb{C}\::\:{a}\overset{−} {{b}}\:+\:{b}\:=\:\mathrm{0}\:{f}\::\:{z}'\:=\:{a}\overset{−} {{z}}\:+\:{b}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{such}\:{that}\:{f}\left({M}\right)\:=\:{M}' \\ $$$$\mathrm{1}.\:{let}\:{z}_{{A}} \:=\:{z}\:{and}\:{z}_{{A}'} \:=\:{z}'\:{and}\:{f}\left({A}\right)\:=\:{A} \\ $$$${show}\:{that}\:\mathrm{2}{Re}\left(\overset{−} {{b}z}\right)\:=\:{b}\overset{−} {{b}} \\ $$$$\left({A}\:{is}\:{the}\:{set}\:{of}\:{invariant}\:{points}\:{and}\right. \\ $$$$\left.\:{describes}\:{a}\:{line}\:\left(\bigtriangleup\right)\:\right) \\ $$$$\mathrm{2}.\:{Deduce}\:{that}\:\left(\bigtriangleup\right)\:{is}\:{a}\:{line}\:{with}\: \\ $$$${gradient}\:\overset{\:\rightarrow} {{u}}\:{with}\:{affix}\:{z}_{\overset{\rightarrow} {{u}}} \:=\:{ib} \\ $$$$\mathrm{3}.\:{show}\:{that}\:\frac{{z}_{{MM}\:'} }{{z}_{{u}} }\:=\:\frac{{b}\overset{−} {{b}}\:−\:\mathrm{2}{Re}\left({b}\overset{−} {{z}}\right)}{{ib}\overset{−} {{b}}} \\ $$$$\mathrm{4}.\:{show}\:{that}\:\mathrm{2}{Re}\left(\overset{−} {{b}z}_{\mathrm{0}} \right)\:=\:{b}\overset{\_} {{b}}\:{where} \\ $$$$\:{z}_{\mathrm{0}} \:=\:\frac{{z}\:+\:{z}\:'}{\mathrm{2}} \\ $$$$\mathrm{5}.\:{Deduce}\:{that}\:{for}\:{M}\:\notin\:\left(\bigtriangleup\right)\:,\:{M}\:{is}\: \\ $$$${a}\:{perpendicular}\:{bisector}\:{of}\:\left[{MM}\:'\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *