Menu Close

Q-The-collection-A-12-13-15-18-23-24-25-26-amp-B-A-if-m-M-B-m-min-amp-M-max-amp-nm-10k-which-number-of-B-1-59-2-60-3-61-4-62-




Question Number 209732 by MM42 last updated on 19/Jul/24
Q) The collection A={12,13,15,18,23,24,25,26}& B⊆A  if  m,M ∈B  ; m=min & M =max &  nm=10k  which number of  B :  1)59       2)60       3)61      4)62
$$\left.{Q}\right)\:{The}\:{collection}\:{A}=\left\{\mathrm{12},\mathrm{13},\mathrm{15},\mathrm{18},\mathrm{23},\mathrm{24},\mathrm{25},\mathrm{26}\right\}\&\:{B}\subseteq{A} \\ $$$${if}\:\:{m},{M}\:\in{B}\:\:;\:{m}={min}\:\&\:{M}\:={max}\:\&\:\:{nm}=\mathrm{10}{k} \\ $$$${which}\:{number}\:{of}\:\:{B}\:: \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{5}\left.\mathrm{9}\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{60}\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{61}\:\:\:\:\:\:\mathrm{4}\right)\mathrm{62} \\ $$$$ \\ $$
Answered by mr W last updated on 20/Jul/24
min    max   ↓           ↓  12,13,15 ⇒2^1 =2  12,13,15,18,23,24,25 ⇒2^5 =32  15,18 ⇒1  15,18,23,24 ⇒2^2 =4  15,18,23,24,25,26 ⇒2^4 =16  18,23,24,25 ⇒2^2 =4  24,25 ⇒1  25,26 ⇒1  totally: 2+32+1+4+16+4+1+1=61  ⇒answer 3)
$${min}\:\:\:\:{max} \\ $$$$\:\downarrow\:\:\:\:\:\:\:\:\:\:\:\downarrow \\ $$$$\mathrm{12},\mathrm{13},\mathrm{15}\:\Rightarrow\mathrm{2}^{\mathrm{1}} =\mathrm{2} \\ $$$$\mathrm{12},\mathrm{13},\mathrm{15},\mathrm{18},\mathrm{23},\mathrm{24},\mathrm{25}\:\Rightarrow\mathrm{2}^{\mathrm{5}} =\mathrm{32} \\ $$$$\mathrm{15},\mathrm{18}\:\Rightarrow\mathrm{1} \\ $$$$\mathrm{15},\mathrm{18},\mathrm{23},\mathrm{24}\:\Rightarrow\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{15},\mathrm{18},\mathrm{23},\mathrm{24},\mathrm{25},\mathrm{26}\:\Rightarrow\mathrm{2}^{\mathrm{4}} =\mathrm{16} \\ $$$$\mathrm{18},\mathrm{23},\mathrm{24},\mathrm{25}\:\Rightarrow\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{24},\mathrm{25}\:\Rightarrow\mathrm{1} \\ $$$$\mathrm{25},\mathrm{26}\:\Rightarrow\mathrm{1} \\ $$$${totally}:\:\mathrm{2}+\mathrm{32}+\mathrm{1}+\mathrm{4}+\mathrm{16}+\mathrm{4}+\mathrm{1}+\mathrm{1}=\mathrm{61} \\ $$$$\left.\Rightarrow{answer}\:\mathrm{3}\right) \\ $$
Commented by MM42 last updated on 19/Jul/24
 ⋛
$$\:\cancel{\lesseqgtr} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *