Question Number 209712 by mr W last updated on 19/Jul/24
Commented by mr W last updated on 19/Jul/24
$${general}\:{case} \\ $$$${OA}={a} \\ $$$${OB}={b}\:>\:{a} \\ $$$$\angle{AOB}=\theta\:<\frac{\pi}{\mathrm{2}} \\ $$$${n}={even}\:{number}=\mathrm{2}{k} \\ $$$${find}\:{the}\:{minimum}\:{of} \\ $$$${AC}_{\mathrm{1}} +{C}_{\mathrm{1}} {C}_{\mathrm{2}} +…+{C}_{{n}−\mathrm{1}} {C}_{{n}} +{C}_{{n}} {B} \\ $$$${in}\:{terms}\:{of}\:{a},\:{b},\:{n},\:\theta. \\ $$
Commented by mahdipoor last updated on 19/Jul/24
$${if}\:{A}={C}_{\mathrm{2}} ={C}_{\mathrm{4}} =…={C}_{{n}} \:\:\:\:\:\:\left({n}=\mathrm{2}{k}\right) \\ $$$${and}\:\:\:\:{C}_{\mathrm{1}} ={C}_{\mathrm{3}} =…={C}_{{n}−\mathrm{1}} ={D}\:\:\:\left({OD}={OA}={a}\right) \\ $$$${L}=\overset{} {\sum}{C}_{{n}−\mathrm{1}} {C}_{{n}} =\mathrm{2}.{n}.{a}.{sin}\frac{\theta}{\mathrm{2}}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}.{cos}\theta} \\ $$$${is}\:{minimum}\:\:\left({a}<{b}\right)\: \\ $$
Commented by mr W last updated on 19/Jul/24
$${you}\:{mean} \\ $$$${L}_{{min}} =\mathrm{2}{na}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${but}\:{this}\:{is}\:{not}\:{true}.\:{example}: \\ $$$${a}=\mathrm{2},\:{b}=\mathrm{6},\:{n}=\mathrm{2},\:\theta=\mathrm{20}° \\ $$$${L}_{{min}} =\mathrm{2}×\mathrm{2}×\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{20}°}{\mathrm{2}}+\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\mathrm{2}×\mathrm{2}×\mathrm{6}×\mathrm{cos}\:\mathrm{20}°} \\ $$$$\:\:\:=\mathrm{8}\:\mathrm{sin}\:\frac{\mathrm{20}°}{\mathrm{2}}+\sqrt{\mathrm{40}−\mathrm{24}\:\mathrm{cos}\:\mathrm{20}°}\:\approx\mathrm{5}.\mathrm{56} \\ $$$${but}\:{minimum}\:=\:\mathrm{2}\sqrt{\mathrm{7}}\approx\mathrm{5}.\mathrm{29} \\ $$$${see}\:{Q}\mathrm{209637} \\ $$
Answered by mahdipoor last updated on 20/Jul/24
$$\begin{cases}{{if}\:\:\left({n}+\mathrm{1}\right)\theta\leqslant\mathrm{180}\:\:\Rightarrow{L}_{{min}} =\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}.{cos}\left(\left({n}+\mathrm{1}\right)\theta\right)}}\\{{if}\:\:\left({n}+\mathrm{1}\right)\theta\geqslant\mathrm{180}\:\:\Rightarrow{L}_{{min}} ={a}+{b}}\end{cases} \\ $$$$\mathrm{i}\:\mathrm{will}\:\mathrm{try}\:\mathrm{to}\:\mathrm{send}\:\mathrm{photo}\:,\:\mathrm{that}\:\mathrm{is}\:\mathrm{explain}\:\mathrm{my}\:\mathrm{answer} \\ $$
Answered by mr W last updated on 21/Jul/24
Commented by mr W last updated on 21/Jul/24
$${the}\:{shortest}\:{path}\:{from}\:{A}\:{to}\:{B}\:{is} \\ $$$${the}\:{path}\:{of}\:{a}\:{light}\:{between}\:{two} \\ $$$${mirrors}. \\ $$$${if}\:{the}\:{light}\:{ray}\:{goes}\:{directly}\:{from} \\ $$$${A}\:{to}\:{B}\:{the}\:{shortest}\:{path}\:{length}\:{is} \\ $$$${L}_{{min}} ={AB}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${if}\:{the}\:{light}\:{ray}\:{are}\:{reflected} \\ $$$${n}=\mathrm{2}{k}\:{times}\:{by}\:{the}\:{mirrors},\:{the} \\ $$$${shortest}\:{path}\:{length}\:{is} \\ $$$${L}_{{min}} =\left({AC}_{\mathrm{1}} +{C}_{\mathrm{1}} {C}_{\mathrm{2}} +…+{C}_{{n}} {B}\right)_{{min}} \\ $$$$\:\:\:\:\:\:\:\:\:=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\theta} \\ $$$$\left({see}\:{also}\:{Q}\mathrm{209637}\right) \\ $$$${such}\:{a}\:{light}\:{ray}\:{path}\:{is}\:{only}\:{possible} \\ $$$${when}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\theta\leqslant\mathrm{180}°,\:{i}.{e}.\:{k}\leqslant\frac{\mathrm{90}}{\theta}−\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$${that}\:{means},\: \\ $$$${when}\:{k}\leqslant{k}_{\mathrm{1}} =\lfloor\frac{\mathrm{90}}{\theta}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor, \\ $$$$\left({AC}_{\mathrm{1}} +{C}_{\mathrm{1}} {C}_{\mathrm{2}} +…+{C}_{{n}} {B}\right)_{{min}} \\ $$$$\:\:\:\:=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\theta} \\ $$$${when}\:{k}>{k}_{\mathrm{1}} =\lfloor\frac{\mathrm{90}}{\theta}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor,\: \\ $$$$\left({AC}_{\mathrm{1}} +{C}_{\mathrm{1}} {C}_{\mathrm{2}} +…+{C}_{{n}} {B}\right)_{{min}} \\ $$$$\:\:\:\:=\mathrm{2}\left({k}−{k}_{\mathrm{1}} \right){a}\:\mathrm{sin}\:\theta+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\mathrm{2}{k}_{\mathrm{1}} +\mathrm{1}\right)\theta} \\ $$$${in}\:{this}\:{case}\:{we}\:{repeat}\:\mathrm{2}\left({k}−{k}_{\mathrm{1}} \right)\:{times} \\ $$$${the}\:{shortest}\:{distance}\:{AD}\:{and}\:{then} \\ $$$${following}\:{the}\:{path}\:{of}\:{the}\:{light}\:{ray}. \\ $$
Commented by mr W last updated on 21/Jul/24
Commented by mahdipoor last updated on 21/Jul/24
$$ \\ $$$${if}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\theta\geqslant\mathrm{180}\:,\:{my}\:{answer}\:{is}\:: \\ $$$${when}\:{C}_{\mathrm{1}} ={C}_{\mathrm{2}} =…={C}_{{n}} ={O}\:\Rightarrow\:{L}={min}={a}+{b} \\ $$$${for}\:{example}\::\:{a}=\mathrm{2}\:,\:{b}=\mathrm{6}\:,\:\theta=\mathrm{45}\:,\:{n}=\mathrm{4}\:\left({k}=\mathrm{2}\right) \\ $$$${my}\:{ans}:\:{L}_{{min}} =\mathrm{8} \\ $$$${your}\:{ans}\::\:{k}_{\mathrm{1}} =\mathrm{1}\Rightarrow{L}_{{min}} =\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{40}+\mathrm{12}\sqrt{\mathrm{2}}}=\mathrm{10}.\mathrm{4} \\ $$
Commented by mr W last updated on 21/Jul/24
$${the}\:{points}\:{between}\:{A}\:{and}\:{B}\:{should} \\ $$$${lie}\:{alternately}\:{on}\:{both}\:{lines},\:{therefore} \\ $$$${point}\:{O}\:{should}\:{be}\:{excepted}. \\ $$
Commented by mahdipoor last updated on 21/Jul/24
$$\mathrm{i}\:\mathrm{think}\:\mathrm{we}\:\mathrm{must}\:\mathrm{accept}\:\mathrm{point}\:\mathrm{O}\:\mathrm{is}\:\mathrm{on}\: \\ $$$$\mathrm{both}\:\mathrm{line}\:,\:\mathrm{then}\:\:\forall\mathrm{C}_{{i}} =\mathrm{O}\:\mathrm{alternately}\:\mathrm{on}\:\mathrm{both}\:\mathrm{line} \\ $$$$\mathrm{if}\:\mathrm{O}\:\mathrm{is}\:\mathrm{excepted}\:;\:\mathrm{as}\:\mathrm{you}\:\mathrm{sey}\:\left({C}_{{i}} \neq{O}\right) \\ $$$${C}_{\mathrm{2}{i}+\mathrm{1}} \in{OB}\:,\:{OC}_{\mathrm{2}{i}+\mathrm{1}} ={very}\:{small}=\beta \\ $$$${C}_{\mathrm{2}{i}} \in{OA}\:,\:{OC}_{\mathrm{2}{i}} ={very}\:{small}=\alpha \\ $$$${L}_{{min}} =\left[{a}^{\mathrm{2}} +\beta^{\mathrm{2}} −\mathrm{2}{a}\beta.{cos}\theta\right]^{\mathrm{0}.\mathrm{5}} +\left[{b}^{\mathrm{2}} +\alpha^{\mathrm{2}} −\mathrm{2}{b}\alpha.{cos}\theta\right]^{\mathrm{0}.\mathrm{5}} + \\ $$$$\frac{{n}}{\mathrm{2}}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} −\mathrm{2}\alpha\beta.{cos}\theta} \\ $$$${for}\:{last}\:{example}\:\left({a}=\mathrm{2}\:,\:{b}=\mathrm{6}\:,\:\theta=\mathrm{45}\:,\:{n}=\mathrm{4}\right) \\ $$$${for}\:\beta=\alpha=\mathrm{1}\:\Rightarrow\:{L}_{{min}} =\mathrm{8}.\mathrm{34}\:<\:\mathrm{10}.\mathrm{4} \\ $$$${for}\:\beta=\alpha=\mathrm{0}.\mathrm{1}\:\Rightarrow\:{L}_{{min}} =\mathrm{8}.\mathrm{01}\:<\mathrm{10}.\mathrm{4} \\ $$$$… \\ $$
Commented by mr W last updated on 21/Jul/24
$${you}\:{are}\:{right}.\:{we}\:{can}\:{select}\:{the} \\ $$$${points}\:{very}\:{close}\:{to}\:{point}\:{O}. \\ $$$${L}_{{min}} \approx{a}−\epsilon+\sqrt{\epsilon^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\epsilon{b}\:\mathrm{cos}\:\left(\mathrm{2}{k}_{\mathrm{1}} −\mathrm{1}\right)\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\rightarrow{a}+{b} \\ $$