Menu Close

Question-209783




Question Number 209783 by Ismoiljon_008 last updated on 21/Jul/24
Answered by mr W last updated on 21/Jul/24
Commented by mr W last updated on 21/Jul/24
AC=(√(12^2 +16^2 ))=20 ⇒radius=10  AB=12×((12)/(20))=((36)/5)  BC=16×((16)/(20))=((64)/5)  OB=10−((36)/5)=((14)/5)  OP=((14)/5)+r=(√((10−r)^2 −r^2 ))  ⇒14+5r=10(√(5(5−r)))  ⇒25r^2 +640r−2304=0  ⇒r=((−320+400)/(25))=((16)/5)  OQ=R−((14)/5)=(√((10−R)^2 −R^2 ))  ⇒5R−14=10(√(5(5−R)))  ⇒25R^2 +360R−2304=0  ⇒R=((−180+300)/(25))=((24)/5)  PQ=r+R=((16)/5)+((24)/5)=8 ✓
$${AC}=\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{16}^{\mathrm{2}} }=\mathrm{20}\:\Rightarrow{radius}=\mathrm{10} \\ $$$${AB}=\mathrm{12}×\frac{\mathrm{12}}{\mathrm{20}}=\frac{\mathrm{36}}{\mathrm{5}} \\ $$$${BC}=\mathrm{16}×\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{64}}{\mathrm{5}} \\ $$$${OB}=\mathrm{10}−\frac{\mathrm{36}}{\mathrm{5}}=\frac{\mathrm{14}}{\mathrm{5}} \\ $$$${OP}=\frac{\mathrm{14}}{\mathrm{5}}+{r}=\sqrt{\left(\mathrm{10}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{14}+\mathrm{5}{r}=\mathrm{10}\sqrt{\mathrm{5}\left(\mathrm{5}−{r}\right)} \\ $$$$\Rightarrow\mathrm{25}{r}^{\mathrm{2}} +\mathrm{640}{r}−\mathrm{2304}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{−\mathrm{320}+\mathrm{400}}{\mathrm{25}}=\frac{\mathrm{16}}{\mathrm{5}} \\ $$$${OQ}={R}−\frac{\mathrm{14}}{\mathrm{5}}=\sqrt{\left(\mathrm{10}−{R}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{5}{R}−\mathrm{14}=\mathrm{10}\sqrt{\mathrm{5}\left(\mathrm{5}−{R}\right)} \\ $$$$\Rightarrow\mathrm{25}{R}^{\mathrm{2}} +\mathrm{360}{R}−\mathrm{2304}=\mathrm{0} \\ $$$$\Rightarrow{R}=\frac{−\mathrm{180}+\mathrm{300}}{\mathrm{25}}=\frac{\mathrm{24}}{\mathrm{5}} \\ $$$${PQ}={r}+{R}=\frac{\mathrm{16}}{\mathrm{5}}+\frac{\mathrm{24}}{\mathrm{5}}=\mathrm{8}\:\checkmark \\ $$
Commented by Ismoiljon_008 last updated on 21/Jul/24
   thank you very much
$$\:\:\:{thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *