Question Number 209783 by Ismoiljon_008 last updated on 21/Jul/24
Answered by mr W last updated on 21/Jul/24
Commented by mr W last updated on 21/Jul/24
$${AC}=\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{16}^{\mathrm{2}} }=\mathrm{20}\:\Rightarrow{radius}=\mathrm{10} \\ $$$${AB}=\mathrm{12}×\frac{\mathrm{12}}{\mathrm{20}}=\frac{\mathrm{36}}{\mathrm{5}} \\ $$$${BC}=\mathrm{16}×\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{64}}{\mathrm{5}} \\ $$$${OB}=\mathrm{10}−\frac{\mathrm{36}}{\mathrm{5}}=\frac{\mathrm{14}}{\mathrm{5}} \\ $$$${OP}=\frac{\mathrm{14}}{\mathrm{5}}+{r}=\sqrt{\left(\mathrm{10}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{14}+\mathrm{5}{r}=\mathrm{10}\sqrt{\mathrm{5}\left(\mathrm{5}−{r}\right)} \\ $$$$\Rightarrow\mathrm{25}{r}^{\mathrm{2}} +\mathrm{640}{r}−\mathrm{2304}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{−\mathrm{320}+\mathrm{400}}{\mathrm{25}}=\frac{\mathrm{16}}{\mathrm{5}} \\ $$$${OQ}={R}−\frac{\mathrm{14}}{\mathrm{5}}=\sqrt{\left(\mathrm{10}−{R}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{5}{R}−\mathrm{14}=\mathrm{10}\sqrt{\mathrm{5}\left(\mathrm{5}−{R}\right)} \\ $$$$\Rightarrow\mathrm{25}{R}^{\mathrm{2}} +\mathrm{360}{R}−\mathrm{2304}=\mathrm{0} \\ $$$$\Rightarrow{R}=\frac{−\mathrm{180}+\mathrm{300}}{\mathrm{25}}=\frac{\mathrm{24}}{\mathrm{5}} \\ $$$${PQ}={r}+{R}=\frac{\mathrm{16}}{\mathrm{5}}+\frac{\mathrm{24}}{\mathrm{5}}=\mathrm{8}\:\checkmark \\ $$
Commented by Ismoiljon_008 last updated on 21/Jul/24
$$\:\:\:{thank}\:{you}\:{very}\:{much} \\ $$