Question Number 209810 by mnjuly1970 last updated on 22/Jul/24
$$ \\ $$$$\:\:\:\mathrm{lim}_{\:\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\:\left(\mathrm{1}+\:\mathrm{x}\:\right)^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{e}}{\mathrm{x}}\:=\:? \\ $$$$ \\ $$
Answered by mr W last updated on 22/Jul/24
$$\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} ={e}^{\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}\right)}{{x}}} ={e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{x}^{\mathrm{3}} }{\mathrm{4}}+…} \\ $$$$\left[\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} \right]^{,} ={e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{x}^{\mathrm{3}} }{\mathrm{4}}+…} \left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}{x}}{\mathrm{3}}−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}}+…\right) \\ $$$${L}=\frac{\left[\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} \right]^{,} −\mathrm{0}}{\mathrm{1}}=\left[\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} \right]_{{x}=\mathrm{0}} ^{,} \\ $$$$\:\:\:={e}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{{e}}{\mathrm{2}}\:\checkmark \\ $$
Commented by mnjuly1970 last updated on 22/Jul/24
$${thanks}\:{alot}\:{sir} \\ $$$$ \\ $$