Menu Close

Question-209847




Question Number 209847 by SonGoku last updated on 23/Jul/24
Answered by mr W last updated on 23/Jul/24
depth =h  h=(√(23^2 −(((53−41)/2))^2 ))=(√(493))=22.20m  cross section area =A  A=((53+41)/2)×h=1043.57 m^2   wetted perimeter =P  P=23+41+23=87 m  hydraulic radius =R  R=(A/P)=((1043.57)/(87))=12 m
$${depth}\:={h} \\ $$$${h}=\sqrt{\mathrm{23}^{\mathrm{2}} −\left(\frac{\mathrm{53}−\mathrm{41}}{\mathrm{2}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{493}}=\mathrm{22}.\mathrm{20}{m} \\ $$$${cross}\:{section}\:{area}\:={A} \\ $$$${A}=\frac{\mathrm{53}+\mathrm{41}}{\mathrm{2}}×{h}=\mathrm{1043}.\mathrm{57}\:{m}^{\mathrm{2}} \\ $$$${wetted}\:{perimeter}\:={P} \\ $$$${P}=\mathrm{23}+\mathrm{41}+\mathrm{23}=\mathrm{87}\:{m} \\ $$$${hydraulic}\:{radius}\:={R} \\ $$$${R}=\frac{{A}}{{P}}=\frac{\mathrm{1043}.\mathrm{57}}{\mathrm{87}}=\mathrm{12}\:{m} \\ $$
Commented by SonGoku last updated on 23/Jul/24
Thank you!
$$\mathrm{Thank}\:\mathrm{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *