Menu Close

determiner-h-CD-20-AB-30-h1-25-




Question Number 209980 by a.lgnaoui last updated on 27/Jul/24
determiner h ?  CD=20    AB=30  h1=25
$$\mathrm{determiner}\:\mathrm{h}\:? \\ $$$$\boldsymbol{\mathrm{CD}}=\mathrm{20}\:\:\:\:\boldsymbol{\mathrm{AB}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{h}}\mathrm{1}=\mathrm{25} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 27/Jul/24
Commented by mr W last updated on 27/Jul/24
is CD^(⌢)  semi−circle?  is AB^(⌢)  circular arc?
$${is}\:\overset{\frown} {{CD}}\:{semi}−{circle}? \\ $$$${is}\:\overset{\frown} {{AB}}\:{circular}\:{arc}? \\ $$
Commented by mr W last updated on 27/Jul/24
r=radius of CD^(⌢)   R=radius of AB^(⌢)   r=((CD)/2)=((20)/2)=10  2R sin^(−1) ((15)/R)=πr  R sin^(−1) ((15)/R)=5π ⇒R=30  h=10−(30−(√(30^2 −15^2 )))=15(√3)−20≈5.98
$${r}={radius}\:{of}\:\overset{\frown} {{CD}} \\ $$$${R}={radius}\:{of}\:\overset{\frown} {{AB}} \\ $$$${r}=\frac{{CD}}{\mathrm{2}}=\frac{\mathrm{20}}{\mathrm{2}}=\mathrm{10} \\ $$$$\mathrm{2}{R}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{15}}{{R}}=\pi{r} \\ $$$${R}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{15}}{{R}}=\mathrm{5}\pi\:\Rightarrow{R}=\mathrm{30} \\ $$$${h}=\mathrm{10}−\left(\mathrm{30}−\sqrt{\mathrm{30}^{\mathrm{2}} −\mathrm{15}^{\mathrm{2}} }\right)=\mathrm{15}\sqrt{\mathrm{3}}−\mathrm{20}\approx\mathrm{5}.\mathrm{98} \\ $$
Commented by a.lgnaoui last updated on 28/Jul/24
Please ,What will  be the value of  h  if lignes AB  and CD  are  hyperboliques?
$$\boldsymbol{\mathrm{Please}}\:,\boldsymbol{\mathrm{What}}\:\boldsymbol{\mathrm{will}}\:\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{h}}\:\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{lignes}}\:\boldsymbol{\mathrm{AB}}\:\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{CD}} \\ $$$$\boldsymbol{\mathrm{are}}\:\:\boldsymbol{\mathrm{hyperboliques}}? \\ $$
Commented by a.lgnaoui last updated on 28/Jul/24
thank you
$$\mathrm{thank}\:\mathrm{you}\: \\ $$
Commented by mr W last updated on 28/Jul/24
if the curves are parabolas or  hyperbolas there is no solution  possible.
$${if}\:{the}\:{curves}\:{are}\:{parabolas}\:{or} \\ $$$${hyperbolas}\:{there}\:{is}\:{no}\:{solution} \\ $$$${possible}. \\ $$
Commented by Frix last updated on 28/Jul/24
2 similar ellipses are possible.  ⇒  AB^(⌢) =CD^(⌢)   and we have  h_2 =h_1 −((∣AB∣)/2)=10  h=h_1 −((∣CD∣)/2)=15
$$\mathrm{2}\:\mathrm{similar}\:\mathrm{ellipses}\:\mathrm{are}\:\mathrm{possible}. \\ $$$$\Rightarrow\:\:\overset{\frown} {{AB}}=\overset{\frown} {{CD}}\:\:\mathrm{and}\:\mathrm{we}\:\mathrm{have} \\ $$$${h}_{\mathrm{2}} ={h}_{\mathrm{1}} −\frac{\mid{AB}\mid}{\mathrm{2}}=\mathrm{10} \\ $$$${h}={h}_{\mathrm{1}} −\frac{\mid{CD}\mid}{\mathrm{2}}=\mathrm{15} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *