Question Number 209999 by som(math1967) last updated on 28/Jul/24
$$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{cosx}}}}\:=? \\ $$
Answered by RabieIsmail last updated on 28/Jul/24
$$\sqrt{\mathrm{2}} \\ $$
Commented by som(math1967) last updated on 28/Jul/24
$$\:{is}\:{limit}\:{exist}\:? \\ $$$$ \\ $$
Commented by RabieIsmail last updated on 28/Jul/24
$${not}\:{exist} \\ $$
Commented by som(math1967) last updated on 28/Jul/24
$${thank}\:{you} \\ $$
Answered by MM42 last updated on 28/Jul/24
$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{e}^{{x}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−{cosx}}}\: \\ $$$$=\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{e}^{{x}} −\mathrm{1}}{\:\sqrt{\:\mathrm{2}}\mid{sin}\frac{{x}}{\mathrm{2}}\mid}\: \\ $$$$=\begin{cases}{{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\frac{{e}^{{x}} −\mathrm{1}}{\:\sqrt{\mathrm{2}}{sin}\frac{{x}}{\mathrm{2}}}\overset{{hop}} {=}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\frac{\mathrm{2}{e}^{{x}} }{\:\sqrt{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}=\sqrt{\mathrm{2}}}\\{{lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\frac{{e}^{{x}} −\mathrm{1}}{\:−\sqrt{\mathrm{2}}{sin}\frac{{x}}{\mathrm{2}}}\overset{{hop}} {=}\:{lim}_{\mathrm{0}^{−} } \:\frac{−\mathrm{2}{e}^{{x}} }{\:\sqrt{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}\:=−\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\Rightarrow\:{lim}\::\:{no}\:{exist}\:\checkmark \\ $$$$ \\ $$
Commented by som(math1967) last updated on 28/Jul/24
$${thank}\:{you}\:{sir} \\ $$
Commented by MM42 last updated on 28/Jul/24
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$
Answered by klipto last updated on 29/Jul/24
$$\boldsymbol{\mathrm{sol}} \\ $$$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{cosx}}}? \\ $$$$\boldsymbol{\mathrm{cosx}}=\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}} \\ $$$$\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=\boldsymbol{\theta} \\ $$$$\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\theta}+\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\theta}=\mathrm{1} \\ $$$$\mathrm{1}−\boldsymbol{\mathrm{cosx}}=\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\theta}+\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\theta}−\left(−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\theta}+\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\theta}\right) \\ $$$$\mathrm{1}−\boldsymbol{\mathrm{cosx}}=\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\theta} \\ $$$$\mathrm{1}−\boldsymbol{\mathrm{cosx}}=\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{1}−\boldsymbol{\mathrm{cosx}}}=\sqrt{\mathrm{2}}\mid\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\mid \\ $$$$\therefore\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{cosx}}}} \\ $$$$\boldsymbol{\mathrm{sol}} \\ $$$$\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} =\mathrm{1}+\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{3}!}+… \\ $$$$\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{2}×\mathrm{3}!}+… \\ $$$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{cosx}}}}=\frac{\mathrm{1}+\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{3}!}+…−\mathrm{1}}{\:\sqrt{\mathrm{2}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{2}×\mathrm{3}!}+…\right)}=\frac{\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{3}!}+…}{\:\sqrt{\mathrm{2}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{2}×\mathrm{3}!}+…\right)}=\frac{\boldsymbol{\mathrm{x}}\left(\mathrm{1}+\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}!}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{3}!}…\right)}{\:\boldsymbol{\mathrm{x}}\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}!}…\right)} \\ $$$$=\frac{\mathrm{1}+\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}!}+\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{3}!}…}{\:\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}!}…\right)},\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{cosx}}}}=\frac{\mathrm{1}}{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}}\checkmark \\ $$$$\boldsymbol{\mathrm{also}}:\boldsymbol{\mathrm{RHL}}\cancel{=}\boldsymbol{\mathrm{LHL}}\:\therefore\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{L}}\mathrm{imit}\:\boldsymbol{\mathrm{DNE}} \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}}\biguplus \\ $$
Commented by som(math1967) last updated on 29/Jul/24
$${thank}\:{you} \\ $$