Menu Close

Solve-ax-3-bx-x-c-0-a-b-c-R-3-and-x-R-the-value-of-x-for-a-1-b-9-c-8-




Question Number 209986 by a.lgnaoui last updated on 28/Jul/24
Solve    ax^3 −bx(√x) +c=0        (a, b, c)∈R^3     and x∈R  (the value of x for a=1,  b=9,c=8)
$$\mathrm{Solve}\: \\ $$$$\:\boldsymbol{\mathrm{ax}}^{\mathrm{3}} −\boldsymbol{\mathrm{bx}}\sqrt{\boldsymbol{\mathrm{x}}}\:+\boldsymbol{\mathrm{c}}=\mathrm{0}\:\:\:\:\: \\ $$$$\:\left(\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}}\right)\in\mathbb{R}^{\mathrm{3}} \:\:\:\:\mathrm{and}\:\boldsymbol{\mathrm{x}}\in\mathbb{R} \\ $$$$\left(\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{a}}=\mathrm{1},\:\:\boldsymbol{{b}}=\mathrm{9},\boldsymbol{{c}}=\mathrm{8}\right) \\ $$
Answered by mr W last updated on 28/Jul/24
let t=x(√x)  at^2 −bt+c=0  ⇒t=((b±(√(b^2 −4ac)))/(2a))  ⇒x=t^(2/3) =(((b±(√(b^2 −4ac)))/(2a)))^(2/3)
$${let}\:{t}={x}\sqrt{{x}} \\ $$$${at}^{\mathrm{2}} −{bt}+{c}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$$\Rightarrow{x}={t}^{\frac{\mathrm{2}}{\mathrm{3}}} =\left(\frac{{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$
Commented by a.lgnaoui last updated on 28/Jul/24
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *