Question Number 210032 by klipto last updated on 29/Jul/24
$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5}\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{dx}} \\ $$
Answered by Sutrisno last updated on 29/Jul/24
$$=\int_{\mathrm{6}} ^{\mathrm{0}} \mathrm{2}{e}^{\frac{\mathrm{1}}{\mathrm{3}}{x}} {dx}+\mathrm{5}\int_{\mathrm{6}} ^{\mathrm{0}} {xe}^{\frac{\mathrm{1}}{\mathrm{3}}{x}} {dx} \\ $$$$=\mathrm{6}{e}^{\frac{\mathrm{1}}{\mathrm{3}}{x}} \mid_{\mathrm{6}} ^{\mathrm{0}} +\mathrm{5}\left[\mathrm{3}{xe}^{\frac{\mathrm{1}}{\mathrm{3}}{x}} −\mathrm{9}{e}^{\frac{\mathrm{1}}{\mathrm{3}}{x}} \right]\mid_{\mathrm{6}} ^{\mathrm{0}} \\ $$$$=\mathrm{6}\left({e}^{\mathrm{0}} −{e}^{\mathrm{2}} \right)+\mathrm{5}\left[\left(\mathrm{0}−\mathrm{9}{e}^{\mathrm{0}} \right)−\left(\mathrm{16}{e}^{\mathrm{2}} −\mathrm{9}{e}^{\mathrm{2}} \right)\right] \\ $$$$=\mathrm{6}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)+\mathrm{5}\left[−\mathrm{9}−\mathrm{7}{e}^{\mathrm{2}} \right] \\ $$$$=\mathrm{6}−\mathrm{6}{e}^{\mathrm{2}} −\mathrm{45}−\mathrm{35}{e}^{\mathrm{2}} \\ $$$$=−\mathrm{39}−\mathrm{41}{e}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by klipto last updated on 29/Jul/24
$$\mathrm{i}\:\mathrm{guess}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{typo} \\ $$$$ \\ $$
Answered by Frix last updated on 29/Jul/24
$$\underset{\alpha} {\overset{\beta} {\int}}\left({ax}+{b}\right)\mathrm{e}^{{cx}} {dx}=\left[\left(\frac{{a}}{{c}}{x}−\frac{{a}}{{c}^{\mathrm{2}} }+\frac{{b}}{{c}}\right)\mathrm{e}^{{cx}} \right]_{\alpha} ^{\beta} \\ $$$$\Rightarrow\:\mathrm{Answer}\:\mathrm{is}\:−\mathrm{3}\left(\mathrm{17e}^{\mathrm{2}} +\mathrm{13}\right) \\ $$
Commented by klipto last updated on 29/Jul/24
$$\mathrm{yeah}\:\mathrm{my}\:\mathrm{bro}\:\mathrm{thanks} \\ $$
Answered by klipto last updated on 29/Jul/24
$$ \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx} \\ $$$$\boldsymbol{\mathrm{aliter}} \\ $$$$\begin{array}{|c|c|c|c|}{\boldsymbol{\mathrm{D}}}&\hline{\boldsymbol{\mathrm{I}}}\\{\mathrm{2}+\mathrm{5}\boldsymbol{\mathrm{x}}}&\hline{\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} }\\{−\mathrm{5}}&\hline{\mathrm{3}\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} }\\{\mathrm{0}}&\hline{\:\:\mathrm{9}\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} }\\\hline\end{array}_{} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\left[\left(\mathrm{2}+\mathrm{5x}\right)\left(\mathrm{3e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\mathrm{45}\left(\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \right)_{\mathrm{6}} ^{\mathrm{0}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\left[\mathrm{3}\left(\left(\mathrm{2}+\mathrm{5x}\right)\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\mathrm{45}\left[\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \right]_{\mathrm{6}} ^{\mathrm{0}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\mathrm{3}\left[\left(\mathrm{2}−\mathrm{32}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \right)\right]−\mathrm{45}\left[\mathrm{1}−\boldsymbol{\mathrm{e}}^{\mathrm{2}} \right] \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\mathrm{6}−\mathrm{96}\boldsymbol{\mathrm{e}}^{\mathrm{2}} −\mathrm{45}+\mathrm{45}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=−\mathrm{39}−\mathrm{51}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{IBP}} \\ $$$$\int\boldsymbol{\mathrm{udv}}=\boldsymbol{\mathrm{uv}}−\int\boldsymbol{\mathrm{vdu}} \\ $$$$\boldsymbol{\mathrm{u}}=\mathrm{2}+\mathrm{5}\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{dv}}=\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{dx}}\left\{\boldsymbol{\mathrm{v}}=\mathrm{3}\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \right\} \\ $$$$\boldsymbol{\mathrm{du}}=\mathrm{5},\:\:\boldsymbol{\mathrm{m}}=\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}},\frac{\boldsymbol{\mathrm{dm}}}{\boldsymbol{\mathrm{dx}}}=\frac{\mathrm{1}}{\mathrm{3}},\boldsymbol{\mathrm{dx}}=\mathrm{3} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\left[\left(\mathrm{2}+\mathrm{5x}\right)\left(\mathrm{3e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\int_{\mathrm{6}} ^{\mathrm{0}} \mathrm{5}\left(\mathrm{3e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right) \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\left[\mathrm{3}\left(\mathrm{2}+\mathrm{5x}\right)\left(\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\mathrm{15}\int_{\mathrm{6}} ^{\mathrm{0}} \boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\left[\mathrm{3}\left(\mathrm{2}+\mathrm{5x}\right)\left(\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\mathrm{15}\left[\mathrm{3}\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \right] \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\mathrm{3}\left[\left(\mathrm{2}+\mathrm{5x}\right)\left(\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}} \right)\right]_{\mathrm{6}} ^{\mathrm{0}} −\mathrm{45}\left[\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \right]_{\mathrm{6}} ^{\mathrm{0}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\mathrm{3}\left[\left(\mathrm{2}−\mathrm{32}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \right)\right]−\mathrm{45}\left[\mathrm{1}−\boldsymbol{\mathrm{e}}^{\mathrm{2}} \right] \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=\mathrm{6}−\mathrm{96}\boldsymbol{\mathrm{e}}^{\mathrm{2}} −\mathrm{45}+\mathrm{45}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \\ $$$$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5x}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \mathrm{dx}=−\mathrm{39}−\mathrm{51}\boldsymbol{\mathrm{e}}^{\mathrm{2}} \checkmark \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}}.\biguplus \\ $$