Menu Close

Find-directional-derivatives-D-v-of-f-x-y-z-3xy-3-2xz-2-in-the-direction-of-the-v-2i-3j-6k-then-Evaluate-directional-derivatives-at-the-point-3-1-2-




Question Number 210079 by Spillover last updated on 30/Jul/24
Find directional derivatives(D_v )of    f(x,y,z)=3xy^3 −2xz^2   in the direction of the  v=2i−3j+6k.  then Evaluate directional derivatives   at the point (3,1,−2)
$${Find}\:{directional}\:{derivatives}\left({D}_{{v}} \right){of}\:\: \\ $$$${f}\left({x},{y},{z}\right)=\mathrm{3}{xy}^{\mathrm{3}} −\mathrm{2}{xz}^{\mathrm{2}} \:\:{in}\:{the}\:{direction}\:{of}\:{the} \\ $$$${v}=\mathrm{2}{i}−\mathrm{3}{j}+\mathrm{6}{k}. \\ $$$${then}\:{Evaluate}\:{directional}\:{derivatives}\: \\ $$$${at}\:{the}\:{point}\:\left(\mathrm{3},\mathrm{1},−\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *