Menu Close

Find-the-directional-derivative-of-f-x-y-4x-3-3x-2-y-2-in-the-direction-given-by-the-angle-pi-3-and-also-Evaluate-directional-derivatives-at-the-point-1-2-




Question Number 210078 by Spillover last updated on 29/Jul/24
Find the directional derivative of  f(x,y)=4x^3 −3x^2 y^2    in the direction given  by the angle θ=(π/3)   and also Evaluate directional derivatives  at the point (1,2)
Findthedirectionalderivativeoff(x,y)=4x33x2y2inthedirectiongivenbytheangleθ=π3andalsoEvaluatedirectionalderivativesatthepoint(1,2)
Answered by Spillover last updated on 30/Jul/24
  D_v f(x,y)=f_x (x,y)a+f_y (x,y)b  f_x =12x^2 −3y^2   f_y =−6xy  v=(a,b)=(cos θ,sin θ)  v=(a,b)=(cos (π/3),sin(π/3)  )=((1/2),((√3)/2))  D_v f(x,y)=f_x (x,y)a+f_y (x,y)b  =(12x^2 −3y^2 )((1/2))+(−6xy)(((√3)/2))  D_v f(x,y)=6x^2 −(3/2)y^2 −3(√3) xy  D_v f(1,2)=6(1^2 )−(3/2)(2^2 )−3(√3)  2×1=−6(√(3 ))
Dvf(x,y)=fx(x,y)a+fy(x,y)bfx=12x23y2fy=6xyv=(a,b)=(cosθ,sinθ)v=(a,b)=(cosπ3,sinπ3)=(12,32)Dvf(x,y)=fx(x,y)a+fy(x,y)b=(12x23y2)(12)+(6xy)(32)Dvf(x,y)=6x232y233xyDvf(1,2)=6(12)32(22)332×1=63

Leave a Reply

Your email address will not be published. Required fields are marked *